skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2137288

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 12, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Thermal limitations play a significant role in modern integrated chips (ICs) design and performance. 3D integrated chip (3DIC) makes the thermal problem even worse due to a high density of transistors and heat dissipation bottlenecks within the stack-up. These issues exacerbate the need for quick thermal solutions throughout the design flow. This paper presents a generative approach for modeling the power to heat dissipation for a 3DIC. This approach focuses on a single layer in a stack and shows that, given the power map, the model can generate the resultant heat for the bulk. It shows two approaches, one straightforward approach where the model only uses the power map and the other where it learns the additional parameters through random vectors. The first approach recovers the temperature maps with 1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the images with pixel values ranging from -1 to 1. The second approach performs better, with the RMSE decreasing to 0.082 in a 0 to 1 range. For any result, the model inference takes less than 100 millisecond for any given power map. These results show that the generative approach has speed advantages over traditional solvers while enabling results with reasonable accuracy for 3DIC, opening the door for thermally aware floorplanning. 
    more » « less