skip to main content


Title: Warning before misinformation exposure modulates memory encoding
Abstract

Exposure to misleading information after witnessing an event can impair future memory reports about the event. This pervasive form of memory distortion, termed the misinformation effect, can be significantly reduced if individuals are warned about the reliability of post-event information before exposure to misleading information. The present fMRI study investigated whether such prewarnings improve subsequent memory accuracy by influencing encoding-related neural activity during exposure to misinformation. We employed a repeated retrieval misinformation paradigm in which participants watched a crime video (Witnessed Event), completed an initial test of memory, listened to a post-event auditory narrative that contained consistent, neutral, and misleading details (Post-Event Information), and then completed a final test of memory. At the behavioral level, participants who were given a prewarning before the Post-Event Information were less susceptible to misinformation on the final memory test compared with participants who were not given a warning (Karanian et al.,Proceedings of the National Academy of Sciences of the United States of America,117, 22771–22779, 2020). This protection from misinformation was accompanied by greater activity in frontal regions associated with source encoding (lateral PFC) and conflict detection (ACC) during misleading trials as well as a more global reduction in activity in auditory cortex and semantic processing regions (left inferior frontal gyrus) across all trials (consistent, neutral, misleading) of the Post-Event Information narrative. Importantly, the strength of these warning-related activity modulations was associated with better protection from misinformation on the final memory test (improved memory accuracy on misleading trials). Together, these results suggest that warnings modulate encoding-related neural activity during exposure to misinformation to improve memory accuracy.

 
more » « less
NSF-PAR ID:
10496040
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Cognitive, Affective, & Behavioral Neuroscience
ISSN:
1530-7026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exposure to even subtle forms of misleading information can significantly alter memory for past events. Memory distortion due to misinformation has been linked to faulty reconstructive processes during memory retrieval and the reactivation of brain regions involved in the initial encoding of misleading details (cortical reinstatement). The current study investigated whether warning participants about the threat of misinformation can modulate cortical reinstatement during memory retrieval and reduce misinformation errors. Participants watched a silent video depicting a crime (original event) and were given an initial test of memory for the crime details. Then, participants listened to an auditory narrative describing the crime in which some original details were altered (misinformation). Importantly, participants who received a warning about the reliability of the auditory narrative either before or after exposure to misinformation demonstrated less susceptibility to misinformation on a final test of memory compared to unwarned participants. Warned and unwarned participants also demonstrated striking differences in neural activity during the final memory test. Compared to participants who did not receive a warning, participants who received a warning (regardless of its timing) demonstrated increased activity in visual regions associated with the original source of information as well as decreased activity in auditory regions associated with the misleading source of information. Stronger visual reactivation was associated with reduced susceptibility to misinformation, whereas stronger auditory reactivation was associated with increased susceptibility to misinformation. Together, these results suggest that a simple warning can modulate reconstructive processes during memory retrieval and reduce memory errors due to misinformation. 
    more » « less
  2. Abstract

    Sleep and stress independently enhance emotional memory consolidation. In particular, theta oscillations (4–7 Hz) during rapid eye movement (REM) sleep increase coherence in an emotional memory network (i.e., hippocampus, amygdala, and prefrontal cortex) and enhance emotional memory. However, little is known about how stress during learning mightinteractwith subsequent REM theta activity to affect emotional memory. In the current study, we examined whether the relationship between REM theta activity and emotional memory differs as a function of pre‐encoding stress exposure and reactivity. Participants underwent a psychosocial stressor (the Trier Social Stress Task;n= 32) or a comparable control task (n= 32) prior to encoding. Task‐evoked cortisol reactivity was assessed by salivary cortisol rise from pre‐ to post‐stressor, and participants in the stress condition were additionally categorized as high or low cortisol responders via a median split. During incidental encoding, participants studied 150 line drawings of negative, neutral, and positive images, followed by the complete color photo. All participants then slept overnight in the lab with polysomnographic recording. The next day, they were given a surprise recognition memory task. Results showed that memory was better for emotional relative to neutral information. Critically, these findings were observed only in the stress condition. No emotional memory benefit was observed in the control condition. In stressed participants, REM theta power significantly predicted memory for emotional information, specifically for positive items. This relationship was observed only in high cortisol responders. For low responders and controls, there was no relationship between REM theta and memory of any valence. These findings provide evidence that elevated stress at encoding, and accompanying changes in neuromodulators such as cortisol, may interact with theta activity during REM sleep to promote selective consolidation of emotional information.

     
    more » « less
  3. This paper describes a group-level analysis of 14 subjects with prefrontal cortex (pFC) lesions and 20 healthy controls performing multiple lateralized visuospatial working memory (WM) trials. Using effective brain connectivity measures inferred from directed information (DI) during memory encoding, we first show that DI features can correctly classify 18 control subjects and 11 subjects with pFC lesions, providing an overall accuracy of 85.3%. Second, we show that differential DI, the change in DI during the encoding phase from pretrial, can successfully overcome inter-subject variability and correctly identify the class of all 34 subjects (100% accuracy). These accuracy results are based on two-thirds majority thresholding among all trials. Finally, we use Welch’s t-test to identify the crucial differences in the two classes’ sub-networks responsible for memory encoding. While the inflow of information to the prefrontal region is significant among subjects with pFC lesions, the outflow from the prefrontal to the frontal and central regions is diminished compared to the control subjects. We further identify specific neural pathways that are exclusively activated for each group during the encoding phase. 
    more » « less
  4. Abstract Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d’ accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way. 
    more » « less
  5. Abstract

    Experiencing stress before an event can influence how that event is later remembered. In the current study, we examine how individual differences in one's physiological response to a stressor are related to changes to underlying brain states and memory performance. Specifically, we examined how changes in intrinsic amygdala connectivity relate to positive and negative memory performance as a function of stress response, defined as a change in cortisol. Twenty‐five participants underwent a social stressor before an incidental emotional memory encoding task. Cortisol samples were obtained before and after the stressor to measure individual differences in stress response. Three resting state scans (pre‐stressor, post‐stressor/pre‐encoding and post‐encoding) were conducted to evaluate pre‐ to post‐stressor and pre‐ to post‐encoding changes to intrinsic amygdala connectivity. Analyses examined relations between greater cortisol changes and connectivity changes. Greater cortisol increases were associated with a greaterdecreasein prefrontal‐amygdala connectivity following the stressor and a reversal in the relation between prefrontal‐amygdala connectivity and negative vs. positive memory performance. Greater cortisol increases were also associated with a greaterincreasein amygdala connectivity with a number of posterior sensory regions following encoding. Consistent with prior findings in non‐stressed individuals, pre‐ to post‐encoding increases in amygdala‐posterior connectivity were associated with greater negative relative to positive memory performance, although this was specific to lateral rather than medial posterior regions and to participants with the greatest cortisol changes. These findings suggest that stress response is associated with changes in intrinsic connectivity that have downstream effects on the valence of remembered emotional content.

     
    more » « less