skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance-based probabilistic liquefaction-induced ground settlement procedure
Performance-based procedures represent an improvement over current state-of-practice procedures that treat the assessment of seismic demand and engineering response parameters independently. Procedures used in current practice generally provide estimates of liquefaction-induced ground settlement that are inconsistent with the desired ground settlement hazard level. A recently developed probabilistic procedure to estimate liquefaction-induced ground settlement is employed to develop a new performance-based procedure that estimates ground settlement which accounts for key sources of uncertainty. The ground-motion intensity and ground settlement estimations are integrated in the proposed procedure to produce hazard curves for liquefaction-induced ground settlement. The hazard curve for ground settlement links different hazard levels with their corresponding values of ground settlement by evaluating a wide range of ground-motion intensities and site characterization parameters with their associated uncertainties. The proposed performance-based procedure also permits the evaluation of different sources of uncertainty and their effects on the ground settlement estimate.  more » « less
Award ID(s):
1956248
PAR ID:
10496082
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Earthquake Spectra
Volume:
40
Issue:
2
ISSN:
8755-2930
Format(s):
Medium: X Size: p. 1301-1323
Size(s):
p. 1301-1323
Sponsoring Org:
National Science Foundation
More Like this
  1. The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations along the infilled shoreline of the port city of İskenderun, Türkiye. Observed liquefaction effects included ground settlement, seaward lateral spreading, and failures along a rubble mound seawall lining the coast. These effects, among other factors, likely contributed to ongoing flooding in İskenderun during moderate storm and high tide events following the earthquakes. The Geotechnical Extreme Events Reconnaissance (GEER) team collected detailed observations and measurements of selected sites affected by liquefaction. This paper presents lateral spreading, ground settlement, and flooding observations in İskenderun, which suggest widespread movements of the coastline relative to the current sea level. The Doğan restaurant case history is described in detail, where earthquake ground deformations and subsequent flooding damaged a dining patio, seawall, and nearby park facilities. Insights from these observations suggest a need to better understand multi-hazard liquefaction and flood consequences to enhance the resilience of coastal cities. 
    more » « less
  2. This study assesses the robustness of a framework based on critical state soil mechanics (CSSM) principles in evaluating earthquake-induced liquefaction manifestation. The assessment is motivated by the contrasting procedures in evaluating static and cyclic liquefaction, where mechanical properties commonly inform the former, whereas the latter often relies on semiempirical-based methods. The framework discussed in this study considers as ingredients (1) laboratory-based mechanical properties that are an average representation of soil’s microstructure, (2) state inversion, (3) the link of state with cyclic resistance ratio (CRR), and (4) the seismic demand, represented by the cyclic stress ratio (CSR). The framework is assessed using ~5000 cone penetration tests (CPTus) conducted after the Canterbury earthquake sequence, where each CPTu is associated with liquefaction manifestation levels. The discussed framework is used to estimate safety factors, which are then combined with several liquefaction severity indexes (LSIs) to evaluate liquefaction manifestation in the context of a classification problem (i.e., “Yes” and “No”). The framework’s performance is assessed using machine learning by estimating receiver operating characteristic curves (ROC). Different state inversion procedures are also considered, and recommendations based on their performance are provided. In particular, a calibrated cavity expansion-based inversion for New Zealand is proposed. We find that the discussed framework offers comparable performance to state-of-practice procedures, even when general considerations for mechanical properties based on CSSM are made, which is encouraging. Moreover, by including mechanical properties, it can better inform extrapolations for regions without significant data and non-typical soils as long as adequate properties are considered. In this context, it shares conceptual similarities with non-ergodic approaches in earthquake engineering. 
    more » « less
  3. The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations and ongoing flooding along the shoreline of the Mediterranean port city of İskenderun, Türkiye. This study compiles field observations and analyses from cross-disciplinary perspectives to investigate whether earthquake-induced liquefaction was a significant factor for increasing the flood hazard in İskenderun. Geotechnical reconnaissance observations following the earthquakes included seaward lateral spreading, settlement beneath buildings, and failures of coastal infrastructure. Three presented lateral spreading case histories indicate consistent ground deformation patterns with areas of reclaimed land. Persistent scatterer interferometry (PSI) measurements from synthetic aperture radar (SAR) imagery identify a noticeably greater rate of pre- and post-earthquake subsidence within the İskenderun coastal and urban areas relative to the surrounding regions. The PSI measurements also indicate subsidence rates accelerated following the earthquakes and were typically highest near the observed liquefaction manifestations. These evaluations suggest that while the liquefaction of coastal reclaimed fill caused significant ground deformations in the shoreline area, ongoing subsidence of İskenderun and other factors likely also exacerbated the flood hazard. Insights from this work suggest the importance of evaluating multi-hazard liquefaction and flood consequences for enhancing the resilience of coastal cities. 
    more » « less
  4. The 2010–2011 Canterbury earthquake sequence included a number of events that triggered recurrent soil liquefaction at many locations in Christchurch, New Zealand. However, the most severe liquefaction was induced by the Mw7.1 September 4, 2010, Darfield and Mw6.2 February 22, 2011, Christchurch earthquakes. The combination of well-documented liquefaction surface manifestations during multiple events, densely recorded ground motions during these events, and detailed subsurface characterization information at the selected sites provides an unprecedented opportunity to add quality case histories to the empirical soil liquefaction database. The authors have already documented and published 50 high-quality liquefaction case histories from these earthquakes using cone penetration test (CPT) data. This paper examines 46 of these case histories using shear-wave velocity (Vs) profiles derived from surface wave (SW) methods and a Christchurch-specific Vs correlation based on CPT tip resistance. The Vs profiles have been used to evaluate the two most commonly used Vs-based simplified liquefaction evaluation procedures (i.e., Andrus and Stokoe and Kayen et al.). An error index (EI ) has been used to quantify the overall performance of these two procedures in relation to liquefaction observations. Although the two procedures are essentially equivalent for sites with normalized Vs (i.e., Vs1) <180 m=s, the Kayen et al. procedure, with 15% probability of liquefaction, provides better predictions of liquefaction triggering for sites with Vs1 greater than 180 m=s. Additionally, total EI values obtained using Vs profiles from surface wave testing in conjunction with the Kayen et al. procedure are lower than two other CPT-based triggering procedures but higher than the total EI value obtained using the Idriss and Boulanger CPT-based procedure. 
    more » « less
  5. In the U.S. Pacific Northwest (PNW), the historic earthquake record is often insufficient to provide inputs to seismic-hazard analyses or to inform ground-motion predictions for certain seismic sources (e.g., the Cascadia Subduction Zone, CSZ). As a result, paleoseismic studies are commonly used to infer information about the seismic hazard. However, among the many forms of coseismic evidence, soil liquefaction provides the best, if not only, evidence from which the intensities of previous ground motions may be constrained. Accordingly, the overarching goal of this research is to use paleoliquefaction to elucidate previous ground motions in the PNW – both for CSZ events and others – and to further constrain the locations, magnitudes, and recurrence rates of such ruptures. Towards that goal, this paper: (i) reviews current paleoliquefaction inverse-analysis methods and their limited, prior applications in the PNW; (ii) compiles all PNW paleoliquefaction evidence from the literature into a GIS database, resulting in data from 185 study sites (e.g., feature locations, types, sizes, and ages); and (iii) develops maps – specific to the CSZ – that forecast paleoliquefaction for 30 different simulations of a CSZ event. These maps can be used to guide field explorations for new evidence, such that they are conducted efficiently and strategically, considering the apparent utility of evidence toward constraint of CSZ ground-motion models. Of additional utility, this process provides regional ground-motion predictions for physics-based simulations of an M9 event, to include expected site effects. Collectively, the maps of expected shaking intensity and liquefaction may be useful in downstream hazard modelling, regional loss estimation, policy development, and science communication. Ultimately, as more paleoliquefaction evidence is identified and studied, better constraint of regional ground-motion hazards will result. Version 2 (this posting) supersedes Version 1 (10.17603/ds2-jm19-2w09). Updates include GIS rasters that provide regional ground-motion intensity predictions (PGA, PGV) for 30 physics-based simulations of an M9 event, to include expected site effects 
    more » « less