skip to main content


This content will become publicly available on August 1, 2024

Title: On the Comparability and Optimal Aggressiveness of the Adversarial Scenario-Based Safety Testing of Robots
This article studies the class of scenario-based safety testing algorithms in the black-box safety testing configuration. For algorithms sharing the same state–action set coverage with different sampling distributions, it is commonly believed that prioritizing the exploration of high-risk states and actions leads to a better sampling efficiency. Our proposal disputes the above intuition by introducing an impossibility theorem that provably shows that all the safety testing algorithms of the aforementioned difference perform equally well with the same expected sampling efficiency. Moreover, for testing algorithms covering different sets of states and actions, the sampling efficiency criterion is no longer applicable as different algorithms do not necessarily converge to the same termination condition. We then propose a testing aggressiveness definition based on the almost safe set concept along with an unbiased and efficient algorithm that compares the aggressiveness between testing algorithms. Empirical observations from the safety testing of bipedal locomotion controllers and vehicle decision-making modules are also presented to support the proposed theoretical implications and methodologies.  more » « less
Award ID(s):
2144156
NSF-PAR ID:
10496107
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Robotics
Volume:
39
Issue:
4
ISSN:
1552-3098
Page Range / eLocation ID:
3299 to 3318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature. 
    more » « less
  2. Storage systems usually have many parameters that affect their behavior. Tuning those parameters can provide significant gains in performance. Alas, both manual and automatic tuning methods struggle due to the large number of parameters and exponential number of possible configurations. Since previous research has shown that some parameters have greater performance impact than others, focusing on a smaller number of more important parameters can speed up auto-tuning systems because they would have a smaller state space to explore. In this paper, we propose Carver, which uses (1) a variance-based metric to quantify storage parameters’ importance, (2) Latin Hypercube Sampling to sample huge parameter spaces; and (3) a greedy but efficient parameter-selection algorithm that can identify important parameters. We evaluated Carver on datasets consisting of more than 500,000 experiments on 7 file systems, under 4 representative workloads. Carver successfully identified important parameters for all file systems and showed that importance varies with different workloads. We demonstrated that Carver was able to identify a near-optimal set of important parameters in our datasets. We showed Carver’s efficiency by testing it with a small fraction of our dataset; it was able to identify the same set of important parameters with as little as 0.4% of the whole dataset. 
    more » « less
  3. Storage systems usually have many parameters that affect their behavior. Tuning those parameters can provide significant gains in performance. Alas, both manual and automatic tuning methods struggle due to the large number of parameters and exponential number of possible configurations. Since previous research has shown that some parameters have greater performance impact than others, focusing on a smaller number of more important parameters can speed up auto-tuning systems because they would have a smaller state space to explore. In this paper, we propose Carver, which uses (1) a variance-based metric to quantify storage parameters’ importance, (2) Latin Hypercube Sampling to sample huge parameter spaces; and (3) a greedy but efficient parameter-selection algorithm that can identify important parameters. We evaluated Carver on datasets consisting of more than 500,000 experiments on 7 file systems, under 4 representative workloads. Carver successfully identified important parameters for all file systems and showed that importance varies with different workloads. We demonstrated that Carver was able to identify a near-optimal set of important parameters in our datasets. We showed Carver’s efficiency by testing it with a small fraction of our dataset; it was able to identify the same set of important parameters with as little as 0.4% of the whole dataset. 
    more » « less
  4. Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis. 
    more » « less
  5. In this thesis we propose novel estimation techniques for localization and planning problems, which are key challenges in long-term autonomy. We take inspiration in our methods from non-parametric estimation and use tools such as kernel density estimation, non-linear least-squares optimization, binary masking, and random sampling. We show that these methods, by avoiding explicit parametric models, outperform existing methods that use them. Despite the seeming differences between localization and planning, we demonstrate in this thesis that the problems share core structural similarities. When real or simulation-sampled measurements are expensive, noisy, or high variance, non-parametric estimation techniques give higher-quality results in less time. We first address two localization problems. In order to permit localization with a set of ad hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the radios. Our system achieves high accuracy and robustness by using kernel density estimation for measurement probability densities, by explicitly modeling antenna delays, and by optimizing this combination with a non-linear least squares formulation. Next, in order to then support robotic navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that combines elements from both traditional dense metric SLAM and topological SLAM, using a binary "masking function" to focus attention. This masking function controls which lidar scans are available for loop closures. We provide several masking functions based on approximate topological class detectors. We then examine planning problems in the final chapter and in the appendix. In order to plan with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), a framework for efficiently computing policies in partially-observable, stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies and uses marginal action costs and particle repetition to improve cost estimates and sample efficiency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte Carlo tree search-based planning by taking advantage of similarities in the final outcomes of similar states and actions. We train a multilayer perceptron to learn a similarity function which we then use to enhance value estimates in the planning. Collectively, we show in this thesis that non-parametric methods promote long-term autonomy by reducing error and increasing robustness across multiple domains. 
    more » « less