- Award ID(s):
- 2050069
- PAR ID:
- 10496307
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Additive Manufacturing
- Volume:
- 73
- Issue:
- C
- ISSN:
- 2214-8604
- Page Range / eLocation ID:
- 103672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Additions of nitrogen were made to ERNiCr-3 (FM 82) weld metal to investigate the effect on weld metal microstructure and solidification cracking susceptibility. Weld samples were prepared with different argon-nitrogen shielding gas mixtures to produce nitrogen variations in the weld metal. The cast pin tear test (CPTT) was then used to evaluate solidification cracking susceptibility as a function of weld metal nitrogen content. Phase fraction and composition of constituents in the final solidification microstructure were characterized via optical and electron microscopy. Thermodynamic (Scheil) calculations were performed to determine the phase formation during solidification, associated solidification path, and solidification temperature range. Solidification cracking susceptibility was found to increase significantly with increasing nitrogen content. The overall amount of second phase in the solidified microstructure increased when nitrogen was added to the weld metal. Small skeletal constituents in the interdendritic regions, primarily Nb-rich carbides (NbC), were more frequently observed with increasing weld metal nitrogen content. Larger cuboidal Ti-rich nitrides (TiN) and carbonitrides (Ti, Nb)(N, C) were found only when nitrogen was added to the weld metal. Their location in dendrite core regions indicates formation during an earlier stage of the solidification process. Scheil calculations confirmed the strong effect of nitrogen additions on the amount and sequence of phase formation during solidification of ERNiCr-3 weld metal. High nitrogen levels ( 100 ppm) facilitate primary nitride formation prior to the solidification of the gamma () dendrites, and increase the amount of phase constituents in the solidification microstructure. The presence of nitrogen also shifts the start of the eutectic /NbC formation at the end of solidification to lower temperatures, which results in an increase in the solidification temperature range. This occurs at much lower nitrogen levels ( 25 ppm) and correlates with the observed increase in solidification cracking susceptibility.more » « less
-
Defining heat treatments for compositionally functionally graded materials (FGMs) is challenging due to varying processing conditions in terminal alloys and gradient regions. In the present work, we studied the impact of heat treatments on phase transformations and the resulting mechanical properties along an FGM grading from stainless steel 304L (SS304L) to Inconel 625 (IN625) FGM fabricated using directed energy deposition (DED) additive manufacturing (AM). We applied heat treatments at 700 °C, 900 °C, and 1150 °C and the microstructure and hardness, as a function of layer-wise composition and applied heat treatment, were characterized. The applicability of computational methods previously developed by the team to predict experimentally observed phases by the hybrid Scheil-equilibrium approach was evaluated. This approach improves the accuracy of predicting phases formed after heat treatment compared to equilibrium thermodynamic calculations using the overall layer compositions and provides a simple pathway to assist in designing heat treatment for FGMs.more » « less
-
null (Ed.)Solidification or hot cracks are commonly observed defects in a number of metal alloys and may lead to deterioration of additively manufactured parts quality. In this study, ultra-high-speed x-ray radiography experiments enable the observation and characterization of bundles of hot-cracks that form in monobloc AA6061 substrate. The crack bundles are related to meltpool characteristics and pore formation. Crack propagation rate is also presented for the case of a crack that initiates from a pore. Two types of relevant pore formation are also described, namely keyhole porosity and crack-remelting porosity. The results of this study are expected to facilitate the validation of theoretical and numerical models of solidification cracking.more » « less
-
Abstract Compositionally graded alloys, a subclass of functionally graded materials (FGMs), utilize localized variations in composition with a single metal part to achieve higher performance than traditional single material parts. In previous work [Kirk, T., Galvan, E., Malak, R., and Arroyave, R., 2018, “Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials,” J. Mech. Des., 140, p. 111410. 10.1115/1.4040816], the authors presented a computational design methodology that avoids common issues which limit a gradient alloy’s feasibility, such as deleterious phases, and optimizes for performance objectives. However, the previous methodology only samples the interior of a composition space, meaning designed gradients must include all elements in the space throughout the gradient. Because even small amounts of additional alloying elements can introduce new deleterious phases, this characteristic often neglects potentially simpler solutions to otherwise unsolvable problems and, consequently, discourages the addition of new elements to the state space. The present work improves upon the previous methodology by introducing a sampling method that includes subspaces with fewer elements in the design search. The new method samples within an artificially expanded form of the state space and projects samples outside the true region to the nearest true subspace. This method is evaluated first by observing the sample distribution in each subspace of a 3D, 4D, and 5D state space. Next, a parametric study in a synthetic 3D problem compares the performance of the new sampling scheme to the previous methodology. Lastly, the updated methodology is applied to design a gradient from stainless steel to equiatomic NiTi that has practical uses such as embedded shape memory actuation and for which the previous methodology fails to find a feasible path.more » « less
-
Abstract This paper examined the effect of Si addition on the cracking resistance of Inconel 939 alloy after laser additive manufacturing (AM) process. With the help of CALculation of PHAse Diagrams (CALPHAD) software Thermo-Calc, the amounts of specific elements (C, B, and Zr) in liquid phase during solidification, cracking susceptibility coefficients (CSC) and cracking criterion based on
values ($$\left| {{\text{d}}T/{\text{d}}f_{{\text{s}}}^{1/2} } \right|$$ T : solidification temperature,f s: mass fraction of solid during solidification) were evaluated as the indicators for composition optimization. It was found that CSC together with values provided a better prediction for cracking resistance.$$\left| {{\text{d}}T/{\text{d}}f_{{\text{s}}}^{1/2} } \right|$$ Graphical abstract