skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Perceptual Science of Augmented Reality
Augmented reality (AR) systems aim to alter our view of the world and enable us to see things that are not actually there. The resulting discrepancy between perception and reality can create compelling entertainment and can support innovative approaches to education, guidance, and assistive tools. However, building an AR system that effectively integrates with our natural visual experience is hard. AR systems often suffer from visual limitations and artifacts, and addressing these flaws requires basic knowledge of perception. At the same time, AR system development can serve as a catalyst that drives innovative new research in perceptual science. This review describes recent perceptual research pertinent to and driven by modern AR systems, with the goal of highlighting thought-provoking areas of inquiry and open questions.  more » « less
Award ID(s):
2041726
PAR ID:
10496323
Author(s) / Creator(s):
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Vision Science
Volume:
9
Issue:
1
ISSN:
2374-4642
Page Range / eLocation ID:
455 to 478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmented reality (AR) devices seek to create compelling visual experiences that merge virtual imagery with the natural world. These devices often rely on wearable near-eye display systems that can optically overlay digital images to the left and right eyes of the user separately. Ideally, the two eyes should be shown images with minimal radiometric differences (e.g., the same overall luminance, contrast, and color in both eyes), but achieving this binocular equality can be challenging in wearable systems with stringent demands on weight and size. Basic vision research has shown that a spectrum of potentially detrimental perceptual effects can be elicited by imagery with radiometric differences between the eyes, but it is not clear whether and how these findings apply to the experience of modern AR devices. In this work, we first develop a testing paradigm for assessing multiple aspects of visual appearance at once, and characterize five key perceptual factors when participants viewed stimuli with interocular contrast differences. In a second experiment, we simulate optical see-through AR imagery using conventional desktop LCD monitors and use the same paradigm to evaluate the multi-faceted perceptual implications when the AR display luminance differs between the two eyes. We also include simulations of monocular AR systems (i.e., systems in which only one eye sees the displayed image). Our results suggest that interocular contrast differences can drive several potentially detrimental perceptual effects in binocular AR systems, such as binocular luster, rivalry, and spurious depth differences. In addition, monocular AR displays tend to have more artifacts than binocular displays with a large contrast difference in the two eyes. A better understanding of the range and likelihood of these perceptual phenomena can help inform design choices that support high-quality user experiences in AR. 
    more » « less
  2. Green, Phil (Ed.)
    Head‐mounted virtual reality (VR) and augmented reality (AR) systems deliver colour imagery directly to a user's eyes, presenting position‐aware, real‐time computer graphics to create the illusion of interacting with a virtual world. In some respects, colour in AR and VR can be modelled and controlled much like colour in other display technologies. However, it is complicated by the optics required for near‐eye display, and in the case of AR, by the merging of real‐world and virtual visual stimuli. Methods have been developed to provide predictable colour in VR, and ongoing research has exposed details of the visual perception of real and virtual in AR. Yet, more work is required to make colour appearance predictable and AR and VR display systems more robust. 
    more » « less
  3. Near-eye display systems for augmented reality (AR) aim to seamlessly merge virtual content with the user’s view of the real-world. A substantial limitation of current systems is that they only present virtual content over a limited portion of the user’s natural field of view (FOV). This limitation reduces the immersion and utility of these systems. Thus, it is essential to quantify FOV coverage in AR systems and understand how to maximize it. It is straightforward to determine the FOV coverage for monocular AR systems based on the system architecture. However, stereoscopic AR systems that present 3D virtual content create a more complicated scenario because the two eyes’ views do not always completely overlap. The introduction of partial binocular overlap in stereoscopic systems can potentially expand the perceived horizontal FOV coverage, but it can also introduce perceptual nonuniformity artifacts. In this arrticle, we first review the principles of binocular FOV overlap for natural vision and for stereoscopic display systems. We report the results of a set of perceptual studies that examine how different amounts and types of horizontal binocular overlap in stereoscopic AR systems influence the perception of nonuniformity across the FOV. We then describe how to quantify the horizontal FOV in stereoscopic AR when taking 3D content into account. We show that all stereoscopic AR systems result in a variable horizontal FOV coverage and variable amounts of binocular overlap depending on fixation distance. Taken together, these results provide a framework for optimizing perceived FOV coverage and minimizing perceptual artifacts in stereoscopic AR systems for different use cases. 
    more » « less
  4. Interpupillary distance (IPD) is the most important parameter for creating a user-specific stereo parallax, which in turn is crucial for correct depth perception. This is why contemporary Head-Mounted Displays (HMDs) offer adjustable lenses to adapt to users’ individual IPDs. However, today’s Video See-Through Augmented Reality (VST AR) HMDs use fixed camera placements to reconstruct the stereoscopic view of a user’s environment. This leads to a potential mismatch between individual IPD settings and the fixed Inter-Camera Distances (ICD), which can lead to perceptual incongruencies, limiting the usability and, potentially, the applicability of VST AR in depth-sensitive use cases. To investigate this incongruency between IPD and ICD, we conducted a 2 × 3 mixed-factor design user study using a near-field, open-loop reaching task comparing distance judgments of Virtual Reality (VR) and VST AR. We also investigated changes in reaching performance via perceptual calibration by incorporating a feedback phase between pre- and post-phase conditions, with a particular focus on the influence of IPD-ICD differences. Our Linear Mixed Model (LMM) analysis showed a significant difference between VR and VST AR, an effect of IPD-ICD mismatch, and a combined effect of both factors. However, subjective measures showed no effect underlining the subconscious nature of the perception of VST AR. This novel insight and its consequences are discussed specifically for depth perception tasks in AR, eXtended Reality (XR), and potential use cases. 
    more » « less
  5. Optical see-through Augmented Reality (OST-AR) is a developing technology with exciting applications including medicine, industry, education, and entertainment. OST-AR creates a mix of virtual and real using an optical combiner that blends images and graphics with the real-world environment. Such an overlay of visual information is simultaneously futuristic and familiar: like the sci-fi navigation and communication interfaces in movies, but also much like banal reflections in glass windows. OSTAR’s transparent displays cause background bleed-through, which distorts color and contrast, yet virtual content is usually easily understandable. Perceptual scission, or the cognitive separation of layers, is an important mechanism, influenced by transparency, depth, parallax, and more, that helps us see what is real and what is virtual. In examples from Pepper’s Ghost, veiling luminance, mixed material modes, window shopping, and today’s OST-AR systems, transparency and scission provide surprising – and ordinary – results. Ongoing psychophysical research is addressing perceived characteristics of color, material, and images in OST-AR, testing and harnessing the perceptual effects of transparency and scission. Results help both understand the visual mechanisms and improve tomorrow’s AR systems. 
    more » « less