skip to main content


Title: Contrastive Learning and Cycle Consistency-Based Transductive Transfer Learning for Target Annotation
Annotating automatic target recognition images is challenging; for example, sometimes there is labeled data in the source domain but no labeled data in the target domain. Therefore, it is essential to construct an optimal target domain classifier using the labeled information of the source domain images. For this purpose, we propose a transductive transfer learning (TTL) network consisting of an unpaired domain translation network, a pretrained source domain classifier, and a gradually constructed target domain classifier. We delve into the unpaired domain translation network, which simultaneously optimizes cycle consistency and modulated noise contrastive losses (MoNCE). Furthermore, the proposed hybrid CUT module integrated into the TTL network generates synthetic negative patches by noisy features mixup, and all the negative patches provide modulated weight into the NCE loss by considering similarity to the query. Apart from that, this hybrid CUT network considers query selection by entropy-based attention to specifying domain variants and invariant regions. The extensive analysis depicted that the proposed transductive network can successfully annotate civilian, military vehicles, and ship targets into the three benchmark ATR datasets. We further demonstrate the importance of each component of the TTL network through extensive ablation studies into the DSIAC dataset.  more » « less
Award ID(s):
1650474
PAR ID:
10496374
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Aerospace and Electronic Systems
ISSN:
0018-9251
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the unsupervised cross-domain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energy-based model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoder-decoder maps examples from the source domain to the target domain, while the energy-based model further refines the mapped results by Langevin revision such that the revised results match to the examples in the target domain in terms of the statistical properties, which are defined by the learned energy function. For the purpose of building up a correspondence between two unpaired domains, the proposed framework simultaneously learns a pair of cooperative networks with cycle consistency, accounting for a two-way translation between two domains, by alternating MCMC teaching. Experiments show that the proposed framework is useful for unsupervised image-to-image translation and unpaired image sequence translation. 
    more » « less
  2. Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of research, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two-layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learning can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain. 
    more » « less
  3. Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of re- search, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two- layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learn- ing can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain. 
    more » « less
  4. Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of re- search, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two- layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learn- ing can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain. 
    more » « less
  5. We investigate the problem of making human activity recognition (AR) scalable-i.e., allowing AR classifiers trained in one context to be readily adapted to a different contextual domain. This is important because AR technologies can achieve high accuracy if the classifiers are trained for a specific individual or device, but show significant degradation when the same classifier is applied context-e.g., to a different device located at a different on-body position. To allow such adaptation without requiring the onerous step of collecting large volumes of labeled training data in the target domain, we proposed a transductive transfer learning model that is specifically tuned to the properties of convolutional neural networks (CNNs). Our model, called HDCNN, assumes that the relative distribution of weights in the different CNN layers will remain invariant, as long as the set of activities being monitored does not change. Evaluation on real-world data shows that HDCNN is able to achieve high accuracy even without any labeled training data in the target domain, and offers even higher accuracy (significantly outperforming competitive shallow and deep classifiers) when even a modest amount of labeled training data is available. 
    more » « less