skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A disconnect in science and practitioner perspectives on heat mitigation
Abstract Researchers and city practitioners are paramount stakeholders in creating urban resilience but have diverse and potentially competing views. To understand varying stakeholder perspectives, we conducted a systematic literature content analysis on green infrastructure (GI) and reflective pavement (RP). The analysis shows a United States (US)-based science-practice disconnect in written communication, potentially hindering holistic decision-making. We identified 191 GI and 93 RP impacts, categorized into co-benefits, trade-offs, disservices, or neutral. Impacts were further classified as environmental, social, or economic. The analysis demonstrates that US city practitioners emphasize social and economic co-benefits that may not be fully represented in the scientific discourse. Scientists communicate a broader range of impacts, including trade-offs and disservices, highlighting a nuanced understanding of the potential consequences. Identifying contrasting perspectives and integrating knowledge from various agents is critical in urban climate governance. Our findings facilitate bridging the science-policy disconnect in the US heat mitigation literature.  more » « less
Award ID(s):
1942805
PAR ID:
10496455
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Urban Sustainability
Volume:
4
Issue:
1
ISSN:
2661-8001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Green infrastructure (GI) has become a panacea for cities working to enhance sustainability and resilience. While the rationale for GI primarily focuses on its multifunctionality (e.g. delivering multiple ecosystem services to local communities), uncertainties remain around how, for whom, and to what extent GI delivers these services. Additionally, many scholars increasingly recognize potential disservices of GI, including gentrification associated with new GI developments. Building on a novel dataset of 119 planning documents from 19 U.S. cities, we utilize insights from literature on justice in urban planning to examine the justice implications of criteria used in the siting of GI projects. We analyze the GI siting criteria described in city plans and how they explicitly or implicitly engage environmental justice. We find that justice is rarely explicitly discussed, yet the dominant technical siting criteria that focus on stormwater and economic considerations have justice implications. We conclude with recommendations for centering justice in GI spatial planning. 
    more » « less
  2. null (Ed.)
    Infrastructure crises are not only technical problems for engineers to solve—they also present social, ecological, financial, and political challenges. Addressing infrastructure problems thus requires a robust planning process that includes examination of the social and ecological systems supporting infrastructure, alongside technical systems. An integrative Social, Ecological, and Technological Systems (SETS) analysis of infrastructure solutions can complement the planning process by revealing potential trade-offs that are often overlooked in standard procedures. We explore the interconnected SETS of the infrastructure problem in the US through comparative case studies of green infrastructure (GI) development in Portland and Baltimore. Currently a popular infrastructure solution to a wide variety of urban ills, GI is the use and mimicry of ecological components (e.g., plants) to perform municipal services (e.g., stormwater management). We develop the ecological-technological spectrum—or ‘eco-techno spectrum’—as a framing tool to bridge all three SETS dimensions. The eco-techno spectrum becomes a platform to explore the institutional knowledge system dynamics of GI development where social dimensions are organized across ecological and technological aspects of GI, exposing how governance differs across specific forms of ecological and technological hybridity. In this study, we highlight the knowledge system challenges of urban planning institutions as a key consideration in the realization of innovative infrastructure crisis ‘fixes.’ Disconnected definition and measurement of GI emerge as two distinct challenges across the knowledge systems examined. By revealing and discussing these challenges, we can begin to recognize—and better plan for—gaps in municipal planning knowledge systems, promoting decisions that address the roots of infrastructure crises rather than treating only their symptoms. 
    more » « less
  3. Abstract There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy (ORE) developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g. bottom temperature), biological (e.g. net primary production) indicators and anthropogenic marine use (i.e. fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to ORE deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare. 
    more » « less
  4. Climate change impacts are not evenly distributed across the globe. Inequities also emerge at a local scale where buildings have the most perceivable impact, affecting anything from access and continuity of the public realm to microclimates.Design decisions can exacerbate or mitigate microspatial inequities—i.e. significant local variation in environmentalhazard exposures, like heat, air pollution, and flooding. Green Infrastructure (GI) is a range of nature-based solutionswith the potential to mitigate environmental hazards. Decentralizing GI is critical to health and resilience, buildingredundancy and capacity through a distributed network of smaller system nodes that are less prone to cascading failures.Architecture projects can support decentralization, targeted mitigation, and incremental implementation; however theircontribution to urban resilience, health, and environmental justice needs to be better characterized to support rationalizedexpansion of such approaches. This requires ways to explore complex and dynamic interactions of buildings within and beyond site boundaries, including: (1) methods for measuring local variation in hazards at relevant spatial scales and (2) tools for modeling the impacts of interventions in inclusive conversations with local stakeholders. This research examines an equity-focused approach to co-designing GI in architecture projects, using data and tools to inform and measure the impact of individual building projects and, eventually, networks of projects. In collaboration with the city of Chelsea, MA, our transdisciplinary team is studying sensor networks and a participatory modeling process to demonstrate how architecture projects can generate and leverage local knowledge about microspatial inequities and mitigation by GI to advance broader community health goals. Co-design activities around one pilot site reveal how decentralization becomes a significant paradigm shift—even among practitioners—eliciting ideas about maximizing capacity, connectivity, co-benefits, and shared responsibility. This paper examines the term decentralization in a multidisciplinary discourse, shares lessons from a specific context, and discusses implications to architectural practice. 
    more » « less
  5. Despite extensive literature on the socio-cultural services of urban open spaces, the role of food-producing spaces has not received sufficient attention. This hampers advocacy for preserving and growing urban agricultural activities, often dismissed on justifications that their contributions to overall food supply are negligible. To understand how the social benefits of urban agriculture have been measured, we conducted a systematic review of 272 peer-reviewed publications, which drew on insights from urban agriculture sites in 57 different countries. Through content analysis, we investigated socio-cultural benefits in four spheres: engaged and cohesive communities, health and well-being, economic opportunities, and education. The analysis revealed growth in research on the social impacts of gardens and farms, with most studies measuring the effects on community cohesion and engagement, followed by increased availability and consumption of fruits and vegetables associated with reduced food insecurity and better health. Fewer studies assessed the impact of urban farming on educational and economic outcomes. Quantifying the multiple ways in which urban agriculture provides benefits to people will empower planners and the private sector to justify future investments. These findings are also informative for research theorizing cities as socio-ecological systems and broader efforts to measure the benefits of urban agriculture, in its many forms. 
    more » « less