skip to main content


Title: Machine Learning Estimation of Maximum Vertical Velocity from Radar
Abstract

The quantification of storm updrafts remains unavailable for operational forecasting despite their inherent importance to convection and its associated severe weather hazards. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely, U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from three-dimensional gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory’s convection permitting Warn-on-Forecast System (WoFS). A parametric regression technique using the sinh–arcsinh–normal distribution is adapted to run with U-Nets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65, and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50%. Meanwhile, the area of the 5 and 10 m s−1updraft cores shows an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity, which could be useful in assessing a storm’s severe potential.

Significance Statement

All convective storm hazards (tornadoes, hail, heavy rain, straight line winds) can be related to a storm’s updraft. Yet, there is no direct measurement of updraft speed or area available for forecasters to make their warning decisions from. This paper addresses the lack of observational data by providing a machine learning solution that skillfully estimates the maximum updraft speed within storms from only the radar reflectivity 3D structure. After further vetting the machine learning solutions on additional real-world examples, the estimated storm updrafts will hopefully provide forecasters with an added tool to help diagnose a storm’s hazard potential more accurately.

 
more » « less
Award ID(s):
2019758
PAR ID:
10496484
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
Volume:
3
Issue:
2
ISSN:
2769-7525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.

     
    more » « less
  2. Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance. 
    more » « less
  3. Abstract

    Ten years of airborne Doppler radar observations are used to study convective updrafts' kinematic and reflectivity structures in tropical cyclone (TC) rainbands. An automated algorithm is developed to identify the strongest rainband updrafts across 12 hurricane‐strength TCs. The selected updrafts are then collectively analyzed by their frequency, radius, azimuthal location (relative to the 200–850 hPa environmental wind shear), structural characteristics, and secondary circulation (radial/vertical) flow pattern. Rainband updrafts become deeper and stronger with increasing radius. A wavenumber‐1 asymmetry arises, showing that in the downshear (upshear) quadrants of the TC, updrafts are more (less) frequent and deeper (shallower). In the downshear quadrants, updrafts primarily have in‐up‐out or in‐up‐in secondary circulation patterns. The in‐up‐out circulation is the most frequent pattern and has the deepest updraft and reflectivity tower. Upshear, the updrafts generally have out‐up‐in or in‐up‐in patterns. The radial flow of the updraft circulations largely follows the vortex‐scale radial flow shear‐induced asymmetry, being increased low‐level inflow (outflow) and midlevel outflow (inflow) in the downshear (upshear) quadrants. It is hypothesized that the convective‐scale circulations are significantly influenced by the vortex‐scale radial flow at the updraft base and top altitudes. Other processes of the convective life cycle, such as bottom‐up decay of aging convective updrafts due to increased low‐level downdrafts, can influence the base altitude and, thus, the base radial flow of the updraft circulation. The findings presented in this study support previous literature regarding convective‐scale patterns of organized rainband convection in a mature, sheared TC.

     
    more » « less
  4. Abstract Observational data collection is extremely hazardous in supercell storm environments, which makes for a scarcity of data used for evaluating the storm-scale guidance from convection allowing models (CAMs) like the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast System (WoFS). The Targeted Observations with UAS and Radar of Supercells (TORUS) 2019 field mission provided a rare opportunity to not only collect these observations, but to do so with advanced technology: vertically pointing Doppler lidar. One standing question for WoFS is how the system forecasts the feedback between supercells and their near-storm environment. The lidar can observe vertical profiles of wind over time, creating unique datasets to compare to WoFS kinematic predictions in rapidly evolving severe weather environments. Mobile radiosonde data are also presented to provide a thermodynamic comparison. The five lidar deployments (three of which observed tornadic supercells) analyzed show WoFS accurately predicted general kinematic trends in the inflow environment; however, the predicted feedback between the supercell and its environment, which resulted in enhanced inflow and larger storm-relative helicity (SRH), were muted relative to observations. The radiosonde observations reveal an overprediction of CAPE in WoFS forecasts, both in the near and far field, with an inverse relationship between the CAPE errors and distance from the storm. Significance Statement It is difficult to evaluate the accuracy of weather prediction model forecasts of severe thunderstorms because observations are rarely available near the storms. However, the TORUS 2019 field experiment collected multiple specialized observations in the near-storm environment of supercells, which are compared to the same near-storm environments predicted by the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast System (WoFS) to gauge its performance. Unique to this study is the use of mobile Doppler lidar observations in the evaluation; lidar can retrieve the horizontal winds in the few kilometers above ground on time scales of a few minutes. Using lidar and radiosonde observations in the near-storm environment of three tornadic supercells, we find that WoFS generally predicts the expected trends in the evolution of the near-storm wind profile, but the response is muted compared to observations. We also find an inverse relationship of errors in instability to distance from the storm. These results can aid model developers in refining model physics to better predict severe storms. 
    more » « less
  5. Abstract

    The landfall of Hurricane Michael (2018) at category-5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine-learning techniques. TDR data from each pass were synthesized using the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner-core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates that the tendencies became more axisymmetric over time. In this study, we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, which is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.

     
    more » « less