The most enigmatic of the canonical properties of circadian clocks is temperature compensation where circadian period length is stable across a wide temperature range despite the temperature dependence of most biochemical reactions. While the core mechanisms of circadian clocks have been well described, the molecular mechanisms of temperature compensation are poorly understood especially in animals. A major gap is the lack of temperature compensation mutants that do not themselves unambiguously affect the temperature dependence of the encoded protein. Here we show that null alleles of two genes encoding components of a complex important for translation of the core clock component period in circadian pacemaker neurons robustly alter the temperature dependence of circadian behavioral period length. These changes are accompanied by parallel temperature dependent changes in oscillations of the PER protein and are consistent with the model that these translation factors mediate the temperature-dependence of PER translation. Consistent with findings from modeling studies, we find that translation of the key negative feedback factor PER plays an instrumental role in temperature compensation.
more »
« less
Clocks at sea: the genome-editing tide is rising
The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.
more »
« less
- PAR ID:
- 10496499
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Trends in Genetics
- ISSN:
- 0168-9525
- Subject(s) / Keyword(s):
- marine biological rhythms circadian clocks circatidal clocks circalunar clocks marine model organisms genome editing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines’ tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.more » « less
-
We explore a novel, exotic physics, modality in multi-messenger astronomy. We are interested in exotic fields emitted by the mergers and theirdirectdetection with a network of atomic clocks. We specifically focus on the rubidium clocks onboard satellites of the Global Positioning System. Bursts of exotic fields may be produced during the coalescence of black hole singularities, releasing quantum gravity messengers. To be detectable such fields must be ultralight and ultra-relativistic and we refer to them as exotic low-mass fields (ELFs). Since such fields possess non-zero mass, the ELF bursts lag behind the gravitational waves emitted by the very same merger. Then the gravitational wave observatories provide a detection trigger for the atomic clock networks searching for the feeble ELF signals. ELFs would imprint an anti-chirp transient across the sensor network. ELFs can be detectable by atomic clocks if they cause variations in fundamental constants. We report our progress in the development of techniques to search for ELF bursts with clocks onboard GPS satellites. We focus on the binary neutron star merger GW170817 of August 17, 2017. We find an intriguing excess in the clock noise post LIGO gravitational wave trigger. Potentially the excess noise could be explained away by the increased solar electron flux post LIGO trigger.more » « less
-
Abstract Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.more » « less
-
Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or “disorder” in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.more » « less
An official website of the United States government

