skip to main content


Title: Tutorial on Dynamics and Control of Grid-Connected Power Electronics and Renewable Generation
Electrical power systems are transitioning from fuel-based generation to renewable generation and transmission interfaced by power electronics. This transition challenges standard power system modeling, analysis, and control paradigms across timescales from milliseconds to seasons. This tutorial focuses on frequency stability on timescales of milliseconds to seconds. We first review basic results for grid-following (GFL) and grid-forming (GFM) control of voltage source converters (VSCs), typical renewable generation, and high voltage direct current (HVdc) transmission. In this context, it becomes apparent that GFL and GFM control functions are needed to operate emerging power systems. However, combining GFL resources, GFM resources, and legacy generation on the same system results in highly complex dynamics that are a significant obstacle to stability analysis. The remainder of the tutorial provides an overview of recent developments in universal GFM controls that bridge the gap between GFL and GFM control and provide a pathway to a coherent control and analysis framework accounting for power generation, power conversion, and power transmission.  more » « less
Award ID(s):
2143188
NSF-PAR ID:
10496513
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Conference on Decision and Control
Page Range / eLocation ID:
4018 to 4025
Format(s):
Medium: X
Location:
Singapore, Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future. 
    more » « less
  2. Historically, the power system has relied on synchronous generators (SGs) to provide inertia and maintain grid stability. However, because of the increased integration of power-electronics-interfaced renewable energy sources, the grid’s stability has been challenged in the last decade due to a lack of inertia. Currently, the system predominantly uses grid-following (GFL) converters, built on the assumption that inertial sources regulate the system stability. Such an assumption does not hold for the low-inertia grids of the future. Grid-forming (GFM) converters, which mimic the traditional synchronous machinery’s functionalities, have been identified as a potential solution to support the low-inertia grids. The performance analysis of GFM converters for small-signal instability can be found in the literature, but large-signal instability is still an open research question. Moreover, various topologies and configurations of GFM converters have been proposed. Still, no comparative study combining all GFC configurations from the perspective of large-signal stability issues can be found. This paper combines and compares all the existing GFM control schemes from the perspective of large-signal stability issues to pave the way for future research and development of GFM converters for large-signal stability analysis and stabilization of the future low-inertia grids. 
    more » « less
  3. This paper proposes a control scheme to force homogeneity for heterogenous network of the grid-forming (GFM) inverters in power electronics dominated grid (PEDG) to enable their aggregation and coherent dynamic interaction. Increased penetration of the renewable energy in distributed generation (DG) fashion is moving traditional power system to a highly disperse and complex heterogenous system i.e., PEDG with fleet of grid-forming and grid-following inverters. Optimal coordination, stability assessment, and situational awareness of PEDG is challenging due to numerous heterogenous inverters operating at the grid-edge that is outside the traditional utility centric power generation boundaries. Aggregation of these inverters will not be insightful due to their heterogenous characteristics. The proposed control scheme to force enclaved homogeneity (FEH) enables an insightful aggregation of GFM that can fully mimic the given physical system dynamics. The proposed FEH scheme enables coherent and homogenized dynamic interaction of GFM inverters that enhances the PEDG resiliency. Moreover, different cluster of GFM can be merged into single cluster with minimal synchronization time and frequency fluctuations. Accurate reference models can be achieved that enables effective dynamic assessment and optimal coordination which results in resilient PEDG. Several case studies provided to validate the effectiveness of proposed FEH in network of GFM. Then, GFMs aggregation and developed reference model for the PEDG system is validated via multiple comparative case studies. 
    more » « less
  4. null (Ed.)
    Increased capacity associated with renewable energy sources has created a need for improved methods for controlling power flows from inverter-based generation. This research provides a comparative study of finite-control-set model predictive current control (FCS-MPC-based) with respect to conventional proportional-integral-based (PI-based) synchronous current control for a three-phase voltage source inverter (VSI). The inverter is accompanied by an inductive-capacitive-inductive (LCL) filter to attenuate pulse width modulation (PWM) switching harmonics. However, an LCL filter introduces a resonance near to the control stability boundary, giving rise to substantial complexity from a control perspective. In order to avoid potential instability caused by the resonance, active damping can be included in the PI-based current control. Though properly designed active damping can improve inverter stability, in practice the robustness of standard PI control is not attainable due to variability in the grid inductance at the point of common coupling (PCC). This is due to impedance variations causing large shifts in the LCL resonance frequency. Weak grid conditions (i.e., a low short-circuit ratio) and a correspondingly high line impedance are particularly susceptible to LCL induced resonance instabilities. As an approach to operate with grid impedance variations and weak grid conditions, FCS-MPC has the potential to produce superior performance compared to PI-based current control methods. This comparative study indicates that FCS-MPC has improved resonance damping and fast dynamic capability in a system with renewable energy sources under weak grid conditions. Detailed results from MATLAB/SimPower are presented to validate the suggested FCS-MPC method where it is robust to uncertainty in the grid impedance variations. Overall results indicate an improvement over conventional PI-based current control methods. 
    more » « less
  5. The AC frequency in electrical power systems is conventionally regulated by synchronous machines. The gradual replacement of these machines by asynchronous renewable-based generation, which provides] little or no frequency control, increases system uncertainty and risk of instability. This poses hard limits on the proportion of renewables that can be integrated into the system. To address this issue, in this paper, we develop a framework for performing frequency control in power systems with arbitrary mixes of conventional and renewable generation. Our approach is based on a robust stability criterion that can be used to guarantee the stability of a full power system model based on a set of decentralised tests, one for each component in the system. It can be applied even when using detailed heterogeneous component models and can be verified using several standard frequency response, state-space, and circuit theoretic analysis tools. By designing decentralised controllers for individual components to meet these decentralised tests, strong apriori robust stability guarantees, that hold independently of the operating point and remain valid even as components are added to and removed from the grid, can be given. This allows every component to contribute to the regulation of system frequency in a simple and provable manner. Notably, our framework certifies the stability of several existing (non-passive) power system control schemes and models, and allows for the study of robustness with respect to delays. 
    more » « less