skip to main content


Title: Repeating caldera collapse events constrain fault friction at the kilometer scale
Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance d c strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of Kīlauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by M W 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains d c to be ≤ 10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature.  more » « less
Award ID(s):
2040425
NSF-PAR ID:
10316778
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
30
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    All instrumented basaltic caldera collapses have generated Mw > 5 very long period earthquakes. However, previous studies of source dynamics have been limited to lumped models treating the caldera block as rigid, leaving open questions related to how ruptures initiate and propagate around the ring fault, and the seismic expressions of those dynamics. We present the first 3D numerical model capturing the nucleation and propagation of ring fault rupture, the mechanical coupling to the underlying viscoelastic magma, and the associated seismic wavefield. We demonstrate that seismic radiation, neglected in previous models, acts as a damping mechanism reducing coseismic slip by up to half, with effects most pronounced for large magma chamber volume/ring fault radius or highly compliant crust/compressible magma. Viscosity of basaltic magma has negligible effect on collapse dynamics. In contrast, viscosity of silicic magma significantly reduces ring fault slip. We use the model to simulate the 2018 Kı̄lauea caldera collapse. Three stages of collapse, characterized by ring fault rupture initiation and propagation, deceleration of the downward‐moving caldera block and magma column, and post‐collapse resonant oscillations, in addition to chamber pressurization, are identified in simulated and observed (unfiltered) near‐field seismograms. A detailed comparison of simulated and observed displacement waveforms corresponding to collapse earthquakes with hypocenters at various azimuths of the ring fault reveals a complex nucleation phase for earthquakes initiated on the northwest. Our numerical simulation framework will enhance future efforts to reconcile seismic and geodetic observations of caldera collapse with conceptual models of ring fault and magma chamber dynamics.

     
    more » « less
  2. Abstract

    Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure‐solution creep, and crack sealing, explains the low‐temperature stability transition from steady‐state velocity‐strengthening to velocity‐weakening as a function of slip‐rate and temperature. In addition, capturing the transition from cataclastic flow to semi‐brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions.

     
    more » « less
  3. Abstract

    Improvement of our understanding of the role of ground deformation due to viscoelastic relaxation following eruptions is important, as the generated signals can resemble renewed magma inflow. We study post‐eruptive unrest at the subglacial Bárðarbunga volcano, Iceland, after a caldera collapse and major magma drainage in 2014–2015. Elevated seismicity began about 6 months after the eruption ended, including nine Mlw> 4.5 earthquakes. Global Navigation Satellite System and Sentinel‐1 Interferometric Synthetic Aperture Radar geodesy are applied to evaluate post‐eruptive ground deformation from 2015 to 2018. Horizontal velocities locally exceed 10 cm/year and rapidly decay with distance away from the caldera. We explore two end‐member models and their combination to explain the post‐eruptive deformation field: 1) viscoelastic relaxation caused by the co‐eruptive caldera collapse and magma withdrawal, and 2) renewed magma inflow. We find parameter combinations for each model that explain the observed ground deformation. The purely viscoelastic relaxation model, consisting of a half‐space composed of a 7‐km thick elastic layer on top of a viscoelastic layer with a viscosity of 3.0 × 1018 Pa s reproduces broadly the observations. A simple magma inflow model consisting of a single point source with an inflow rate of 1 × 107 m3/year at 0.7 km depth broadly fits the observations, but may be unrealistic. A more elaborate model of magma inflow into a 10‐km deep sill combined with slip on the caldera ring fault explains the observations well. Our results suggest that the co‐eruptive deformation field is likely influenced by viscoelastic relaxation, renewed magma inflow, or a combination of both processes.

     
    more » « less
  4. Abstract

    We use densely spaced campaign GPS observations and laboratory friction experiments on fault rocks from one of the world's most rapidly slipping low‐angle normal faults, the Mai'iu fault in Papua New Guinea, to investigate the nature of interseismic deformation on active low‐angle normal faults. GPS velocities reveal 8.3 ± 1.2 mm/year of horizontal extension across the Mai'iu fault, and are fit well by dislocation models with shallow fault locking (above 2 km depth), or by deeper locking (from ~5–16 km depth) together with shallower creep. Laboratory friction experiments show that gouges from the shallowest portion of the fault zone are predominantly weak and velocity‐strengthening, while fault rocks deformed at greater depths are stronger and velocity‐weakening. Evaluating the geodetic and friction results together with geophysical and microstructural evidence for mixed‐mode seismic and aseismic slip at depth, we find that the Mai'iu fault is most likely strongly locked at depths of ~5–16 km and creeping updip and downdip of this region. Our results suggest that the Mai'iu fault and other active low‐angle normal faults can slip in large (Mw > 7) earthquakes despite near‐surface interseismic creep on frictionally stable clay‐rich gouges.

     
    more » « less
  5. Abstract

    Determining conditions for earthquake slip on faults is a key goal of fault mechanics highly relevant to seismic hazard. Previous studies have demonstrated that enhanced dynamic weakening (EDW) can lead to dynamic rupture of faults with much lower shear stress than required for rupture nucleation. We study the stress conditions before earthquake ruptures of different sizes that spontaneously evolve in numerical simulations of earthquake sequences on rate‐and‐state faults with EDW due to thermal pressurization of pore fluids. We find that average shear stress right before dynamic rupture (aka shear prestress) systematically varies with the rupture size. The smallest ruptures have prestress comparable to the local shear stress required for nucleation. Larger ruptures weaken the fault more, propagate over increasingly under‐stressed areas due to dynamic stress concentration, and result in progressively lower average prestress over the entire rupture. The effect is more significant in fault models with more efficient EDW. We find that, as a result, fault models with more efficient weakening produce fewer small events and result in systematically lower b‐values of the frequency‐magnitude event distributions. The findings (a) illustrate that large earthquakes can occur on faults that appear not to be critically stressed compared to stresses required for slip nucleation; (b) highlight the importance of finite‐fault modeling in relating the local friction behavior determined in the lab to the field scale; and (c) suggest that paucity of small events or seismic quiescence may be the observational indication of mature faults that operate under low shear stress due to EDW.

     
    more » « less