ABSTRACT AimThe aim of the current study is to conduct a comprehensive phylogenetic analysis of the genusArbaciato elucidate the evolution and phylogenetic relationships among all extant species and reevaluate the presence of geographic structure within species that have wide, fragmented distributions. LocationSpecimens ofArbaciawere collected from 34 localities spanning the Atlantic and Pacific Oceans, and the Mediterranean Sea. MethodsWe obtained sequences from three mitochondrial markers (COI, 16S and the control region and adjacent tRNAs) and two nuclear markers (28S and 18S; the latter ultimately excluded from the final analyses). Phylogenetic trees were constructed using maximum likelihood and Bayesian inference approaches. A time‐calibrated phylogenetic tree was inferred using a relaxed Bayesian molecular clock and three fossil calibration points. ResultsOur analysis supports the monophyly of the genusArbacia, including the speciesArbacia nigra(previously assigned to the monotypic genusTetrapygus). The new phylogenetic topology suggests an alternative biogeographic scenario of initial divergence between Atlantic and Pacific subclades occurring approximately 9 million years ago. The dispersal and subsequent diversification of the Pacific subclade to the southeast Pacific coincides with the onset of glacial and interglacial cycles in Patagonia. In the Atlantic subclade, the split betweenA. punctulataandA. lixulaoccurred 3.01–6.30 (median 3.74 million years ago), possibly associated with the strengthening of the Gulf Stream current connecting the western and eastern Atlantic. Our study also reveals significant genetic and phylogeographic structures within both Atlantic species, indicating ongoing differentiation processes between populations. Main ConclusionOur study provides valuable insights into the evolutionary history and biogeography of the genusArbaciaand highlights the complex interplay between historical climate changes and oceanic currents in shaping the distribution and diversification of echinoids in the Atlantic and Pacific Oceans.
more »
« less
Young evolutionary origins of dioecy in the genus Asparagus
Abstract PremiseDioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genusAsparagus(Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. MethodsWe use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genusAsparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. ResultsWe estimate that dioecy evolved once or twice approximately 2.78−3.78 million years ago inAsparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. ConclusionsOur findings support previous work implicating a young age and the possibility of two origins of dioecy inAsparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy inAsparagusapproximately 2.78−3.78 million years ago.
more »
« less
- Award ID(s):
- 2110875
- PAR ID:
- 10496618
- Publisher / Repository:
- John Wiley & Sons
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 111
- Issue:
- 2
- ISSN:
- 0002-9122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. Here we genetically dissected repeated origins and losses of prickles, sharp epidermal projections, that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genusSolanum. Strikingly, homologs promote prickle formation across angiosperms that collectively diverged over 150 million years ago. By developing newSolanumgenetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone-activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.more » « less
-
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles—sharp epidermal projections—that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genusSolanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing newSolanumgenetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.more » « less
-
Abstract The identity of the diploid progenitors of octoploid cultivated strawberry (Fragaria × ananassa) has been subject to much debate. Past work identified four subgenomes and consistent evidence forF. californica(previously namedF. vescasubsp.bracteata) andF. iinumaeas donors for subgenomes A and B, respectively, with conflicting results for the origins of subgenomes C and D. Here, reticulate phylogeny and admixture analysis support hybridization betweenF. viridisandF. vescain the ancestry of subgenome A, and betweenF. nipponicaandF. iinumaein the ancestry of subgenome B. Using an LTR-age-distribution-based approach, we estimate that the octoploid and its intermediate hexaploid and tetraploid ancestors emerged approximately 0.8, 2, and 3 million years ago, respectively. These results provide an explanation for previous reports ofF. viridisandF. nipponicaas donors of the C and D subgenomes and unify conflicting hypotheses about the evolutionary origin of octoploidFragaria.more » « less
-
ABSTRACT AimWe assess the systematic relationships and historical biogeographic patterns in the subfamily Scincinae, a group of lizards that primarily inhabits the Afro‐Madagascan and Saharo‐Arabian regions with isolated lineages in Europe, North America, East Asia, India and Sri Lanka. The contemporary distribution of these lineages on the historical Laurasian and Gondwanan landmasses make scincines an ideal system to study the roles of vicariance and dispersal on a geologic scale of tens of millions of years. LocationGlobal. TaxonSubfamily Scincinae (Family Scincidae). MethodsWe conducted biogeographic analyses on a reconstructed, time‐calibrated species tree of scincine genera, including members of the other Scincidae subfamilies, using seven nuclear loci (~6 k base pairs). We also constructed a lineage‐through‐time plot to assess the timing of diversification within scincines. ResultsOur analysis estimated strong support for the monophyly of Scincinae that is further comprised a strongly‐supported Gondwanan clade nested within a broader Laurasian group. While most of the extant, genus‐level diversity within the Gondwanan clade was accrued post‐Eocene, the majority of the Laurasian lineages diverged during the Palaeocene or earlier, suggesting large‐scale extinctions on continents of Laurasian origin. Counterintuitively, scincines from India and Sri Lanka have distinct biogeographical origins despite a long tectonic association between these landmasses, suggesting at least two independent, long‐distance, trans‐oceanic dispersal events into the subcontinent. Our biogeographic analyses suggest that scincines likely originated in East and Southeast Asia during the late Cretaceous (ca. 70 Ma), and eventually dispersed westwards to Africa and Madagascar, where their greatest current‐day species richness occurs. Main ConclusionsOur study demonstrates the concomitant roles of dispersal and extinction in shaping modern‐day assemblages of ancient clades such as scincine lizards. Our range evolution analysis shows that despite the greater diversity observed in the Afro‐Madagascan region, the origin of scincines can be traced back to Southeast Asia and East Asia, followed by westward dispersals. These dispersals may have been followed by significant extinctions in tropical East Asia, resulting in relatively lower diversity of scincines in these regions. Notably, our analysis reveals that Sri Lankan and Peninsular Indian scincines have distinct evolutionary origins.more » « less