ABSTRACT The scaling of the specific Type Ia supernova (SN Ia) rate with host galaxy stellar mass $$\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$$ as measured in ASAS-SN and DES strongly suggests that the number of SNe Ia produced by a stellar population depends inversely on its metallicity. We estimate the strength of the required metallicity dependence by combining the average star formation histories (SFHs) of galaxies as a function of their stellar mass with the mass–metallicity relation (MZR) for galaxies and common parametrizations for the SN Ia delay-time distribution. The differences in SFHs can account for only ∼30 per cent of the increase in the specific SN Ia rate between stellar masses of M⋆ = 1010 and 107.2 M⊙. We find that an additional metallicity dependence of approximately ∼Z−0.5 is required to explain the observed scaling. This scaling matches the metallicity dependence of the close binary fraction observed in APOGEE, suggesting that the enhanced SN Ia rate in low-mass galaxies can be explained by a combination of their more extended SFHs and a higher binary fraction due to their lower metallicities. Due to the shape of the MZR, only galaxies below M⋆ ≈ 3 × 109 M⊙ are significantly affected by the metallicity-dependent SN Ia rates. The $$\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$$ scaling becomes shallower with increasing redshift, dropping by factor of ∼2 at 107.2 M⊙ between z = 0 and 1 with our ∼Z−0.5 scaling. With metallicity-independent rates, this decrease is a factor of ∼3. We discuss the implications of metallicity-dependent SN Ia rates for one-zone models of galactic chemical evolution.
more »
« less
Constraining the stellar populations of ultra-diffuse galaxies in the MATLAS survey using spectral energy distribution fitting
ABSTRACT We use spectral energy distribution fitting to place constraints on the stellar populations of 59 ultra-diffuse galaxies (UDGs) in the low-to-moderate density fields of the MATLAS survey. We use the routine prospector, coupled with archival data in the optical from the Dark Energy Camera Legacy Survey, and near- and mid-infrared imaging from the Wide-field Infrared Survey Explorer, to recover the stellar masses, ages, metallicities, and star formation time-scales of the UDGs. We find that a subsample of the UDGs lies within the scatter of the mass–metallicity relation (MZR) for local classical dwarfs. However, another subsample is more metal-poor, being consistent with the evolving MZR at high redshift. We investigate UDG positioning trends in the mass–metallicity plane as a function of surface brightness, effective radius, axis ratio, local volume density, mass-weighted age, star formation time-scale, globular cluster (GC) counts, and GC specific frequency. We find that our sample of UDGs can be separated into two main classes: Class A: comprised of UDGs with lower stellar masses, prolonged star formation histories (SFHs), more elongated, inhabiting less dense environments, hosting fewer GCs, younger, consistent with the classical dwarf MZR, and fainter. Class B: UDGs with higher stellar masses, rapid SFHs, rounder, inhabiting the densest of our probed environments, hosting on average the most numerous GC systems, older, consistent with the high-redshift MZR (i.e. consistent with early-quenching), and brighter. The combination of these properties suggests that UDGs of Class A are consistent with a ‘puffed-up dwarf’ formation scenario, while UDGs of Class B seem to be better explained by ‘failed galaxy’ scenarios.
more »
« less
- Award ID(s):
- 2308390
- PAR ID:
- 10496625
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 529
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3210-3234
- Size(s):
- p. 3210-3234
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We derive the stellar population parameters of 11 quiescent ultra-diffuse galaxies (UDGs) from Keck/KCWI data. We supplement these with 14 literature UDGs, creating the largest spectroscopic sample of UDGs to date (25). We find a strong relationship between their α-enhancement and their star formation histories: UDGs that formed on very short time-scales have elevated [Mg/Fe] abundance ratios, whereas those forming over extended periods present lower values. Those forming earlier and faster are overall found in high-density environments, being mostly early infalls into the cluster. No other strong trends are found with infall times. We analyse the stellar mass–metallicity, age–metallicity, and [Mg/Fe]–metallicity relations of the UDGs, comparing them to other types of low mass galaxies. Overall, UDGs scatter around the established stellar mass–metallicity relations of classical dwarfs. We find that GC-rich UDGs have intermediate-to-old ages, but previously reported trends of galaxy metallicity and GC richness are not reproduced with this spectroscopic sample due to the existence of GC-rich UDGs with elevated metallicities. In addition, we also find that a small fraction of UDGs could be ‘failed-galaxies’, supported by their GC richness, high alpha-abundance, fast formation time-scales and that they follow the mass–metallicity relation of z ∼2 galaxies. Finally, we also compare our observations to simulated UDGs. We caution that there is not a single simulation that can produce the diverse UDG properties simultaneously, in particular the low metallicity failed galaxy like UDGs.more » « less
-
ABSTRACT Observational surveys have found that the dynamical masses of ultradiffuse galaxies (UDGs) correlate with the richness of their globular cluster (GC) system. This could be explained if GC-rich galaxies formed in more massive dark matter haloes. We use simulations of galaxies and their GC systems from the E-MOSAICS project to test whether the simulations reproduce such a trend. We find that GC-rich simulated galaxies in galaxy groups have enclosed masses that are consistent with the dynamical masses of observed GC-rich UDGs. However, simulated GC-poor galaxies in galaxy groups have higher enclosed masses than those observed. We argue that GC-poor UDGs with low stellar velocity dispersions are discs observed nearly face on, such that their true mass is underestimated by observations. Using the simulations, we show that galactic star formation conditions resulting in dispersion-supported stellar systems also leads to efficient GC formation. Conversely, conditions leading to rotationally supported discs lead to inefficient GC formation. This result may explain why early-type galaxies typically have richer GC systems than late-type galaxies. This is also supported by comparisons of stellar axis ratios and GC-specific frequencies in observed dwarf galaxy samples, which show GC-rich systems are consistent with being spheroidal, while GC-poor systems are consistent with being discs. Therefore, particularly for GC-poor galaxies, rotation should be included in dynamical mass measurements from stellar dynamics.more » « less
-
Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M⊙< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs.more » « less
-
Abstract We study the stellar properties of a sample of simulated ultradiffuse galaxies (UDGs) with stellar massM⋆= 107.5–109M⊙, selected from the TNG50 simulation, where UDGs form mainly in high-spin dwarf-mass halos. We divide our sample into star-forming and quenched UDGs, finding good agreement with the stellar assembly history measured in observations. Star-forming UDGs and quenched UDGs withM⋆≥ 108M⊙in our sample are particularly inefficient at forming stars, having 2–10 times less stellar mass than non-UDGs for the same virial mass halo. These results are consistent with recent mass inferences in UDG samples and suggest that the most inefficient UDGs arise from a late assembly of the dark matter mass followed by a stellar growth that is comparatively slower (for star-forming UDGs) or that was interrupted due to environmental removal of the gas (for quenched UDGs). Regardless of efficiency, UDGs are 60% poorer in [Fe/H] than the population of non-UDGs at a fixed stellar mass, with the most extreme objects having metal content consistent with the simulated mass–metallicity relation atz∼ 2. Quenched UDGs stop their star formation in shorter timescales than non-UDGs of similar mass and are, as a consequence, alpha enhanced with respect to non-UDGs. We identify metallicity profiles in UDGs as a potential avenue to distinguish between different formation paths for these galaxies, where gentle formation as a result of high-spin halos would present well-defined declining metallicity radial profiles while powerful-outflows or tidal stripping formation models would lead to flatter or constant metallicity as a function of radius due to the inherent mixing of stellar orbits.more » « less