skip to main content


Title: Modulation of Tropical Convection‐Circulation Interaction by Aerosol Indirect Effects in Convective Self‐Aggregation Simulations of a Gray Zone Global Model
Abstract

Disentangling the response of tropical convective updrafts to enhanced aerosol concentrations has been challenging. Leading theories for explaining the influence of aerosol concentrations on tropical convection are based on the dynamical response of convection to changes in cloud microphysics, neglecting possible changes in the environment. In recent years, global convection‐permitting models (GCPM) have been developed to circumvent problems arising from imposing artificial scale separation on physical processes associated with deep convection. Here, we use a global model in the convective gray zone that partially simulates deep convection to investigate how enhanced concentrations of aerosols that act as cloud condensate nuclei (CCN) impact tropical convection features by modulating the convection‐circulation interaction. Results from a pair of idealized non‐rotating radiative‐convective equilibrium simulations show that the enhanced CCN concentration leads to weaker large‐scale circulation, the closeness of deep convective systems to the moist cluster edges, and more mid‐level cloud water at an equilibrium state in which convective self‐aggregation occurred. Correspondingly, the enhanced CCN concentration modulates how the physical processes that support or oppose convective aggregation maintain the aggregated state at equilibrium. Overall, the enhanced CCN concentration facilitates the development of deep convection in a drier environment but reduces mean precipitation. Our results emphasize the importance of allowing atmospheric phenomena to evolve continuously across spatial and temporal scales in simulations when investigating the response of tropical convection to changes in cloud microphysics.

 
more » « less
NSF-PAR ID:
10496655
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
6
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  2. Abstract

    This study examines how the congestus mode of tropical convection is expressed in numerical simulations of radiative‐convective equilibrium (RCE). We draw insights from the ensemble of cloud‐resolving models participating in the RCE Model Intercomparison Project (RCEMIP) and from a new ensemble of two‐dimensional RCE simulations. About half of the RCEMIP models produce a congestus circulation that is distinct from the deep and shallow modes. In both ensembles, the congestus circulation strengthens with large‐scale convective aggregation, and in the 2D ensemble this comes at the expense of the shallow circulation centered at the top of the boundary layer. Congestus invigoration occurs because aggregation dries out the upper troposphere, which allows moist congestus outflow to undergo strong radiative cooling. The cooling generates divergence that promotes continued congestus overturning (a positive feedback). This mechanism is fundamentally similar to the driving of shallow circulations by radiative cooling at the top of the surface boundary layer. Aggregation and congestus invigoration are also associated with enhanced static stability throughout the troposphere, but a modeling experiment shows that enhanced stability is not necessary for congestus invigoration; rather, invigoration itself contributes to the stability increase via its impact on the vertical profile of radiative cooling. Changes in entrainment cooling are also found to play an important role in stability enhancement, as has been suggested previously. When present, congestus circulations have a large impact on the mean RCE atmospheric state; for this reason, their inconsistent representation in models and their impact on the real tropical atmosphere warrant further scrutiny.

     
    more » « less
  3. Abstract

    Previous work has found that as the surface warms the large‐scale tropical circulations weaken, convective anvil cloud fraction decreases, and atmospheric static stability increases. Circulation changes inevitably lead to changes in the humidity and cloud fields which influence the surface energetics. The exchange of mass between the boundary layer (BL) and the midtroposphere has also been shown to weaken in global climate models. What has remained less clear is how robust these changes in the circulation are to different representations of convection, clouds, and microphysics in numerical models. We use simulations from the Radiative‐Convective Equilibrium Model Intercomparison Project to investigate the interaction between overturning circulations, surface temperature, and atmospheric moisture. We analyze the underlying mechanisms of these relationships using a 21‐member model ensemble that includes both General Circulation Models and Cloud‐system Resolving Models. We find a large spread in the change of intensity of the overturning circulation. Both the range of the circulation intensity, and its change with warming can be explained by the range of the mean upward vertical velocity. There is also a consistent decrease in the exchange of mass between the BL and the midtroposphere. However, the magnitude of the decrease varies substantially due to the range of responses in both mean precipitation and mean precipitable water. We hypothesize based on these results that despite well understood thermodynamic constraints, there is still a considerable ability for the cloud fields and the precipitation efficiency to drive a substantial range of tropical convective responses to warming.

     
    more » « less
  4. Abstract

    Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts.

     
    more » « less
  5. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less