skip to main content


Title: Congestus Mode Invigoration by Convective Aggregation in Simulations of Radiative‐Convective Equilibrium
Abstract

This study examines how the congestus mode of tropical convection is expressed in numerical simulations of radiative‐convective equilibrium (RCE). We draw insights from the ensemble of cloud‐resolving models participating in the RCE Model Intercomparison Project (RCEMIP) and from a new ensemble of two‐dimensional RCE simulations. About half of the RCEMIP models produce a congestus circulation that is distinct from the deep and shallow modes. In both ensembles, the congestus circulation strengthens with large‐scale convective aggregation, and in the 2D ensemble this comes at the expense of the shallow circulation centered at the top of the boundary layer. Congestus invigoration occurs because aggregation dries out the upper troposphere, which allows moist congestus outflow to undergo strong radiative cooling. The cooling generates divergence that promotes continued congestus overturning (a positive feedback). This mechanism is fundamentally similar to the driving of shallow circulations by radiative cooling at the top of the surface boundary layer. Aggregation and congestus invigoration are also associated with enhanced static stability throughout the troposphere, but a modeling experiment shows that enhanced stability is not necessary for congestus invigoration; rather, invigoration itself contributes to the stability increase via its impact on the vertical profile of radiative cooling. Changes in entrainment cooling are also found to play an important role in stability enhancement, as has been suggested previously. When present, congestus circulations have a large impact on the mean RCE atmospheric state; for this reason, their inconsistent representation in models and their impact on the real tropical atmosphere warrant further scrutiny.

 
more » « less
Award ID(s):
2124496
NSF-PAR ID:
10370113
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
7
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

     
    more » « less
  2. A two‐column radiative–convective equilibrium (RCE) model is used to study the depth of convection that develops in the subsiding branch of a Walker‐like overturning circulation. The model numerically solves for two‐dimensional non‐rotating hydrostatic flow, which is damped by momentum diffusion in the boundary layer and model interior, and by convective momentum transport. Convection, clouds and radiative transfer are parametrized, and the convection scheme does not include explicit freezing or melting.

    While integrating the model towards local RCE, the level of neutral buoyancy (LNB) fluctuates between mid‐ and high levels. Evaporation of detrained moisture at the LNB locally cools the environment, so that the final RCE state has a stable layer at mid‐levels (550 hPa ≈ 50–100 hPa below 0 °C), which is unrelated to melting of ice. Preferred detrainment at mid‐ and high levels leaves the middle‐to‐upper troposphere relatively dry.

    A circulation is introduced by incrementally lowering the sea‐surface temperature in one column, which collapses convection: first to a congestus mode with tops near 550 hPa, below the dry layer created in RCE; then to congestus with tops near 650 hPa; and finally to shallow cumulus with tops near 850 hPa. Critical to stabilizing congestus near 650 hPa is large radiative cooling near moist cumulus tops under a dry upper atmosphere. This congestus mode is very sensitive, and only develops when horizontal temperature gradients created by evaporative and radiative cooling can persist against the work of gravity waves. This only happens in runs with ample momentum diffusion, which are those with convective momentum transport or large domains.

    Compared to the shallow mode, the congestus mode produces a deep moist layer and more precipitation. This reduces radiative cooling in the cloud layer and enhances stability near the cloud base, which weakens the circulation, and leads to less precipitation over the warm ocean.

     
    more » « less
  3. Abstract

    Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts.

     
    more » « less
  4. Abstract

    A 3‐D cloud‐resolving model has been used to investigate the domain size dependence of simulations of convective self‐aggregation (CSA) in radiative‐convective equilibrium. We investigate how large a domain is needed to allow multiple convective clusters and also how the properties equilibrated CSA depend on domain size. We used doubly periodic square domains of widths 768, 1,536, 3,072, and 6,144 km, over 350 simulated days. In the 768‐, 1,536‐, and 3,072‐km domains, the simulations produced circular convective clusters surrounded by broader regions of dry, subsiding air. In the 6,144‐km domain, the convection ultimately forms two semiconnected bands. As the domain size increases, equilibrated CSA moistens in two ways. First, as the circulation widens, this leads to stronger boundary layer winds and a more humid boundary layer. Second, the stronger inflow into the convective region boundary layer is associated with a warmer convective region boundary layer, which leads to intensified deep convection, more melting and freezing near the freezing level, enhanced midlevel stability, increased congestus activity, and detrainment of moist air into the dry region. In the larger domains, the deep convection and congestus slowly oscillate out of phase with each other with a time period of about 25 to 30 days. We hypothesize that other important domain size sensitivities, including a decrease in net moist static energy export from the convective region, are fundamentally linked to the increasing relationship between domain size and boundary layer wind speed. Our results suggest that the statistics of CSA converge only for domains wider than about 3,000 km.

     
    more » « less
  5. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) consists of simulations at three fixed sea‐surface temperatures (SSTs: 295, 300, and 305 K) and thus allows for a calculation of the climate feedback parameter based on the change of the top‐of‐atmosphere radiation imbalance. Climate feedback parameters range widely across RCEMIP, roughly from6 to 3 W m−2 K−1, particularly across general‐circulation models (GCMs) as well as global and large‐domain cloud‐resolving models (CRMs). Small‐domain CRMs and large‐eddy simulations have a smaller range of climate feedback parameters due to the absence of convective self‐aggregation. More than 70–80% of the intermodel spread in the climate feedback parameter can be explained by the combined temperature dependencies of convective aggregation and shallow cloud fraction. Low climate sensitivities are associated with an increase of shallow cloud fraction (increasing the planetary albedo) and/or an increase in convective aggregation with warming. An increase in aggregation is associated with an increase in outgoing longwave radiation, caused primarily by mid‐tropospheric drying, and secondarily by an expansion of subsidence regions. Climate sensitivity is neither dependent on the average amount of aggregation nor on changes in deep/anvil cloud fraction. GCMs have a lower overall climate sensitivity than CRMs because in most GCMs convective aggregation increases with warming, whereas in CRMs, convective aggregation shows no consistent temperature trend.

     
    more » « less