skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comprehensive model for the formation and evolution of the faintest Milky Way dwarf satellites
ABSTRACT In this study, we modify the semi-analytic model galacticus in order to accurately reproduce the observed properties of dwarf galaxies in the Milky Way. We find that reproducing observational determinations of the halo occupation fraction and mass–metallicity relation for dwarf galaxies requires us to include H2 cooling, an updated ultraviolet background radiation model, and to introduce a model for the metal content of the intergalactic medium. By fine-tuning various model parameters and incorporating empirical constraints, we have tailored the model to match the statistical properties of Milky Way dwarf galaxies, such as their luminosity function and size–mass relation. We have validated our modified semi-analytic framework by undertaking a comparative analysis of the resulting galaxy–halo connection. We predict a total of $$300 ^{+75} _{-99}$$ satellites with an absolute V-band magnitude (MV) less than 0 within 300 kpc from our Milky Way analogues. The fraction of subhaloes that host a galaxy at least this bright drops to 50 per cent by a halo peak mass of ∼8.9 × 107 M⊙, consistent with the occupation fraction inferred from the latest observations of Milky Way satellite population.  more » « less
Award ID(s):
1945310
PAR ID:
10496657
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
529
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3387-3407
Size(s):
p. 3387-3407
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Semi-analytic modelling furnishes an efficient avenue for characterizing dark matter haloes associated with satellites of Milky Way-like systems, as it easily accounts for uncertainties arising from halo-to-halo variance, the orbital disruption of satellites, baryonic feedback, and the stellar-to-halo mass (SMHM) relation. We use the SatGen semi-analytic satellite generator, which incorporates both empirical models of the galaxy–halo connection as well as analytic prescriptions for the orbital evolution of these satellites after accretion onto a host to create large samples of Milky Way-like systems and their satellites. By selecting satellites in the sample that match observed properties of a particular dwarf galaxy, we can infer arbitrary properties of the satellite galaxy within the cold dark matter paradigm. For the Milky Way’s classical dwarfs, we provide inferred values (with associated uncertainties) for the maximum circular velocity $$v_\text{max}$$ and the radius $$r_\text{max}$$ at which it occurs, varying over two choices of baryonic feedback model and two prescriptions for the SMHM relation. While simple empirical scaling relations can recover the median inferred value for $$v_\text{max}$$ and $$r_\text{max}$$, this approach provides realistic correlated uncertainties and aids interpretability. We also demonstrate how the internal properties of a satellite’s dark matter profile correlate with its orbit, and we show that it is difficult to reproduce observations of the Fornax dwarf without strong baryonic feedback. The technique developed in this work is flexible in its application of observational data and can leverage arbitrary information about the satellite galaxies to make inferences about their dark matter haloes and population statistics. 
    more » « less
  2. Abstract In this work, we study how the abundance and dynamics of populations of disrupting satellite galaxies change systematically as a function of host galaxy properties. We apply a theoretical model of the phase-mixing process to classify intact satellite galaxies and stellar streamlike and shell-like debris in ∼1500 Milky Way–mass systems generated by a semi-analytic galaxy formation code,SatGen. In particular, we test the effect of host galaxy halo mass, disk mass, ratio of disk scale height to length, and stellar feedback model on disrupting satellite populations. We find that the counts of tidal debris are consistent across all host galaxy models, within a given host mass range, and that all models can have streamlike debris on low-energy orbits, consistent with that observed around the Milky Way. However, we find a preference for streamlike debris on lower-energy orbits in models with a thicker (lower-density) host disk or on higher-energy orbits in models with a more massive host disk. Importantly, we observe significant halo-to-halo variance across all models. These results highlight the importance of simulating and observing large samples of Milky Way–mass galaxies and accounting for variations in host properties when using disrupting satellites in studies of near-field cosmology. 
    more » « less
  3. Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies. 
    more » « less
  4. ABSTRACT The abundance of the faintest galaxies provides insight into the nature of dark matter and the process of dwarf galaxy formation. In the LCDM scenario, low-mass haloes are so numerous that the efficiency of dwarf formation must decline sharply with decreasing halo mass in order to accommodate the relative scarcity of observed dwarfs and satellites in the Local Group. The nature of this decline contains important clues to the mechanisms regulating the onset of galaxy formation in the faintest systems. We explore here two possible models for the stellar mass (M*)–halo mass (M200) relation at the faint end, motivated by some of the latest LCDM cosmological hydrodynamical simulations. One model includes a sharp mass threshold below which no luminous galaxies form, as expected if galaxy formation proceeds only in systems above the hydrogen-cooling limit. In the second model, M* scales as a steep power law of M200 with no explicit cut-off, as suggested by recent semi-analytical work. Although both models predict satellite numbers around Milky Way-like galaxies consistent with current observations, they predict vastly different numbers of ultrafaint dwarfs and of satellites around isolated dwarf galaxies. Our results illustrate how the satellite mass function around dwarfs may be used to probe the M*–M200 relation at the faint end and to elucidate the mechanisms that determine which low-mass haloes ‘light up’ or remain dark in the LCDM scenario. 
    more » « less
  5. Abstract A consequence of a nonzero occupation fraction of massive black holes (MBHs) in dwarf galaxies is that these MBHs can become residents of larger galaxy halos via hierarchical merging and tidal stripping. Depending on the parameters of their orbits and original hosts, some of these MBHs will merge with the central supermassive black hole in the larger galaxy. We examine four cosmological zoom-in simulations of Milky Way-like galaxies to study the demographics of the black hole mergers that originate from dwarf galaxies. Approximately half of these mergers have mass ratios less than 0.04, which we categorize as intermediate mass ratio inspirals, or IMRIs. Inspiral durations range from 0.5–8 Gyr, depending on the compactness of the dwarf galaxy. Approximately half of the inspirals may become more circular with time, while the eccentricity of the remainder does not evolve. Overall, IMRIs in Milky Way-like galaxies are a significant class of black hole mergers that can be detected by LISA, and must be prioritized for waveform modeling. 
    more » « less