ABSTRACT The abundance of the faintest galaxies provides insight into the nature of dark matter and the process of dwarf galaxy formation. In the LCDM scenario, low-mass haloes are so numerous that the efficiency of dwarf formation must decline sharply with decreasing halo mass in order to accommodate the relative scarcity of observed dwarfs and satellites in the Local Group. The nature of this decline contains important clues to the mechanisms regulating the onset of galaxy formation in the faintest systems. We explore here two possible models for the stellar mass (M*)–halo mass (M200) relation at the faint end, motivated by some of the latest LCDM cosmological hydrodynamical simulations. One model includes a sharp mass threshold below which no luminous galaxies form, as expected if galaxy formation proceeds only in systems above the hydrogen-cooling limit. In the second model, M* scales as a steep power law of M200 with no explicit cut-off, as suggested by recent semi-analytical work. Although both models predict satellite numbers around Milky Way-like galaxies consistent with current observations, they predict vastly different numbers of ultrafaint dwarfs and of satellites around isolated dwarf galaxies. Our results illustrate how the satellite mass function around dwarfs may be used to probe the M*–M200 relation at the faint end and to elucidate the mechanisms that determine which low-mass haloes ‘light up’ or remain dark in the LCDM scenario.
more »
« less
Probabilistic inference of the structure and orbit of Milky Way satellites with semi-analytic modelling
ABSTRACT Semi-analytic modelling furnishes an efficient avenue for characterizing dark matter haloes associated with satellites of Milky Way-like systems, as it easily accounts for uncertainties arising from halo-to-halo variance, the orbital disruption of satellites, baryonic feedback, and the stellar-to-halo mass (SMHM) relation. We use the SatGen semi-analytic satellite generator, which incorporates both empirical models of the galaxy–halo connection as well as analytic prescriptions for the orbital evolution of these satellites after accretion onto a host to create large samples of Milky Way-like systems and their satellites. By selecting satellites in the sample that match observed properties of a particular dwarf galaxy, we can infer arbitrary properties of the satellite galaxy within the cold dark matter paradigm. For the Milky Way’s classical dwarfs, we provide inferred values (with associated uncertainties) for the maximum circular velocity $$v_\text{max}$$ and the radius $$r_\text{max}$$ at which it occurs, varying over two choices of baryonic feedback model and two prescriptions for the SMHM relation. While simple empirical scaling relations can recover the median inferred value for $$v_\text{max}$$ and $$r_\text{max}$$, this approach provides realistic correlated uncertainties and aids interpretability. We also demonstrate how the internal properties of a satellite’s dark matter profile correlate with its orbit, and we show that it is difficult to reproduce observations of the Fornax dwarf without strong baryonic feedback. The technique developed in this work is flexible in its application of observational data and can leverage arbitrary information about the satellite galaxies to make inferences about their dark matter haloes and population statistics.
more »
« less
- Award ID(s):
- 2210283
- PAR ID:
- 10563277
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 536
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2891-2913
- Size(s):
- p. 2891-2913
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT In this study, we modify the semi-analytic model galacticus in order to accurately reproduce the observed properties of dwarf galaxies in the Milky Way. We find that reproducing observational determinations of the halo occupation fraction and mass–metallicity relation for dwarf galaxies requires us to include H2 cooling, an updated ultraviolet background radiation model, and to introduce a model for the metal content of the intergalactic medium. By fine-tuning various model parameters and incorporating empirical constraints, we have tailored the model to match the statistical properties of Milky Way dwarf galaxies, such as their luminosity function and size–mass relation. We have validated our modified semi-analytic framework by undertaking a comparative analysis of the resulting galaxy–halo connection. We predict a total of $$300 ^{+75} _{-99}$$ satellites with an absolute V-band magnitude (MV) less than 0 within 300 kpc from our Milky Way analogues. The fraction of subhaloes that host a galaxy at least this bright drops to 50 per cent by a halo peak mass of ∼8.9 × 107 M⊙, consistent with the occupation fraction inferred from the latest observations of Milky Way satellite population.more » « less
-
ABSTRACT We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $$10^{10\!-\!14} \, \rm M_{\odot }$$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 $${\rm Mpc}\, h^{-1}$$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass $${\approx }2\times 10^{12} \, \rm M_{\odot }$$ are most spherical, with an average minor-to-major axial ratio of $$\langle s \rangle$$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $$10^{10} \, \rm M_{\odot }$$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions.more » « less
-
ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $$0.5{{\ \rm per\ cent}}$$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($$M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$$) to the largest spirals ($$M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $$M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $$\gtrsim 100\ \rm pc$$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $$M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.more » « less
-
ABSTRACT Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($$M_\star \sim 10^{7-9}\, {\rm M}_\odot$$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $$R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$$, with a nearly constant scatter $$\langle \sigma \rangle = 0.084\, [{\rm dex}]$$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses.more » « less
An official website of the United States government
