ABSTRACT The regulation of bone size is a poorly understood and complex developmental process. Evolutionary models can enable insight through interrogation of the developmental and molecular underpinnings of natural variation in bone size and shape. Here, we examine the Mexican tetra (Astyanax mexicanus), a species of teleost fish comprising of an extant river‐dwelling surface fish and obligate cave‐dwelling fish. These divergent morphs have evolved for thousands of years in drastically different habitats, which have led to diverse phenotypic differences. Among many craniofacial aberrations, cavefish harbor a wider gape, an underbite, and larger jaws compared to surface‐dwelling morphs. Morphotypes are inter‐fertile, allowing quantitative genetic analyses in F2pedigrees derived from surface × cavefish crosses. Here, we used quantitative trait locus (QTL) analysis to determine the genetic basis of jaw size. Strikingly, we discovered a single genomic region associated with several jaw size metrics. Future work identifying genetic lesions that explain differences in jaw development will provide new insight to the mechanisms driving bone size differences across vertebrate taxa.
more »
« less
Genetic basis of ecologically relevant body shape variation among four genera of cichlid fishes
Abstract Divergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclimasp.×Aulonocarasp. andLabidochromissp.×Labeotropheussp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic‐pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2–8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.
more »
« less
- Award ID(s):
- 1942178
- PAR ID:
- 10496674
- Publisher / Repository:
- Molecular Ecology
- Date Published:
- Journal Name:
- Molecular ecology
- Volume:
- 32
- Issue:
- 14
- ISSN:
- 1365-294X
- Page Range / eLocation ID:
- 3975 to 3988
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The North American racers (Coluber constrictor) are widely distributed across the Nearctic and numerous studies have demonstrated extensive variation in morphology, ecology, and population genetic structure. Here we take an integrative approach to understand lineage diversification within this taxon by combining genomic sequence capture data, mtDNA sequence data, morphometrics, and ecological niche models. Both the genomic data and mtDNA phylogeographic analyses support five lineages distributed across the range of this species. However, demographic model selection based on these two datasets strongly conflict in both the model of divergence and estimates of timing of lineage divergence. While mtDNA and concatenated genomic data suggest a Miocene origin of these distinct groups, coalescent-based demographic models with the sequence capture data suggest lineage diversification occurred at ~33 kya in allopatry without gene flow. Using linear morphological measurements of head shape we demonstrate that lineages distributed largely east and west of the Mississippi River are distinguishable. Furthermore, ecological niche models demonstrate that lineages distributed in subtropical habitats have environmental niche space that is significantly differentiated from lineages distributed across the continent. Taken together, these results suggest that ecology is an important axis of lineage divergence within this group and that more fine-scale analyses may find even greater differentiation between the populations identified here. This abstract translated to Spanish is avaliable in the Supporting Infromation section (Este resumen traducido al español está disponible en la sección, Supporting Infromation).more » « less
-
Abstract Weedy rice (Oryzaspp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved fromauscultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL‐seq approach that combines bulked segregant analysis and high‐throughput whole genome resequencing to map the three important weediness traits in an F2population derived from a cross between BHA weedy rice with an ancestralauscultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop,indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor–descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.more » « less
-
Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations.more » « less
-
Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation.more » « less
An official website of the United States government

