skip to main content


Title: Leibniz International Proceedings in Informatics (LIPIcs):Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box values. Recent work of [Shuchi Chawla et al., 2020] obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover (MSSC_f) problem. For distributions of support m, UDT admits a log m approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time [Ray Li et al., 2020]. Our main result implies that the same properties hold for PB and MSSC_f. We also study the case where the distribution over values is given more succinctly as a mixture of m product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time n^Õ(m²/ε²) when the mixture components on every box are either identical or separated in TV distance by ε.  more » « less
Award ID(s):
2225259
NSF-PAR ID:
10496735
Author(s) / Creator(s):
; ; ;
Editor(s):
Megow, Nicole; Smith, Adam
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
APPROX RANDOM
Subject(s) / Keyword(s):
Pandora’s Box Min Sum Set Cover stochastic optimization approximation preserving reduction Theory of computation → Design and analysis of algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guruswami, Venkatesan (Ed.)
    We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0. 
    more » « less
  2. Goaoc, Xavier ; Kerber, Michael (Ed.)
    We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics. 
    more » « less
  3. A systematic study of simultaneous optimization of constraint satisfaction problems was initiated by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous Max-Cut. Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous Max-Cut which is almost optimal assuming the Unique Games Conjecture (UGC). For single instance Max-Cut, Goemans-Williamson [JACM, 1995] gave an α_GW-approximation algorithm where α_GW ≈ .87856720... which is optimal assuming the UGC. It was left open whether one can achieve an α_GW-minimum approximation algorithm for simultaneous Max-Cut. We answer the question by showing that there exists an absolute constant ε₀ ≥ 10^{-5} such that it is NP-hard to get an (α_GW- ε₀)-minimum approximation for simultaneous Max-Cut assuming the Unique Games Conjecture. 
    more » « less
  4. We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals T require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of varying rates such that any two terminals u, v with priorities P(u), P(v) are connected using edges of rate min{P(u),P(v)} or better. The case where edge costs are proportional to their rate is approximable to within a constant factor of the optimal solution. For the more general case of non-proportional costs, this problem is hard to approximate with ratio c log log n, where n is the number of vertices in the graph. A simple greedy algorithm by Charikar et al., however, provides a min{2(ln |T | + 1), lρ}-approximation in this setting, where ρ is an approximation ratio for a heuristic solver for the Steiner tree problem and l is the number of priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ ≈ 1.39, for example). In this paper, we describe a natural generalization to the multi-level case of the classical (single-level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm. We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and experimentally performs better with respect to the optimum solution. We develop an integer linear programming formulation to compute an exact solution for the multi-level Steiner tree problem with non-proportional edge costs and use it to evaluate the performance of our algorithm on both random graphs and multi-level instances derived from SteinLib. 
    more » « less
  5. Braverman, Mark (Ed.)
    Grothendieck’s inequality [Grothendieck, 1953] states that there is an absolute constant K > 1 such that for any n× n matrix A, ‖A‖_{∞→1} := max_{s,t ∈ {± 1}ⁿ}∑_{i,j} A[i,j]⋅s(i)⋅t(j) ≥ 1/K ⋅ max_{u_i,v_j ∈ S^{n-1}}∑_{i,j} A[i,j]⋅⟨u_i,v_j⟩. In addition to having a tremendous impact on Banach space theory, this inequality has found applications in several unrelated fields like quantum information, regularity partitioning, communication complexity, etc. Let K_G (known as Grothendieck’s constant) denote the smallest constant K above. Grothendieck’s inequality implies that a natural semidefinite programming relaxation obtains a constant factor approximation to ‖A‖_{∞ → 1}. The exact value of K_G is yet unknown with the best lower bound (1.67…) being due to Reeds and the best upper bound (1.78…) being due to Braverman, Makarychev, Makarychev and Naor [Braverman et al., 2013]. In contrast, the little Grothendieck inequality states that under the assumption that A is PSD the constant K above can be improved to π/2 and moreover this is tight. The inapproximability of ‖A‖_{∞ → 1} has been studied in several papers culminating in a tight UGC-based hardness result due to Raghavendra and Steurer (remarkably they achieve this without knowing the value of K_G). Briet, Regev and Saket [Briët et al., 2015] proved tight NP-hardness of approximating the little Grothendieck problem within π/2, based on a framework by Guruswami, Raghavendra, Saket and Wu [Guruswami et al., 2016] for bypassing UGC for geometric problems. This also remained the best known NP-hardness for the general Grothendieck problem due to the nature of the Guruswami et al. framework, which utilized a projection operator onto the degree-1 Fourier coefficients of long code encodings, which naturally yielded a PSD matrix A. We show how to extend the above framework to go beyond the degree-1 Fourier coefficients, using the global structure of optimal solutions to the Grothendieck problem. As a result, we obtain a separation between the NP-hardness results for the two problems, obtaining an inapproximability result for the Grothendieck problem, of a factor π/2 + ε₀ for a fixed constant ε₀ > 0. 
    more » « less