skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box values. Recent work of [Shuchi Chawla et al., 2020] obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover (MSSC_f) problem. For distributions of support m, UDT admits a log m approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time [Ray Li et al., 2020]. Our main result implies that the same properties hold for PB and MSSC_f. We also study the case where the distribution over values is given more succinctly as a mixture of m product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time n^Õ(m²/ε²) when the mixture components on every box are either identical or separated in TV distance by ε.  more » « less
Award ID(s):
2225259
PAR ID:
10496735
Author(s) / Creator(s):
; ; ;
Editor(s):
Megow, Nicole; Smith, Adam
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
APPROX RANDOM
Subject(s) / Keyword(s):
Pandora’s Box Min Sum Set Cover stochastic optimization approximation preserving reduction Theory of computation → Design and analysis of algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem. Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})). 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0. 
    more » « less
  3. Goaoc, Xavier; Kerber, Michael (Ed.)
    We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics. 
    more » « less
  4. In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs. In this problem, we want to build a data structure that can provide (1 ± ε)-approximation of cut values on a graph with n vertices. For arbitrary directed graphs, such a data structure requires Ω(n2) bits even for constant ε. To circumvent this, recent works study β-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most β times the total weight in the other direction. We consider the for-each model, where the goal is to approximate each cut with constant probability, and the for-all model, where all cuts must be preserved simultaneously. We improve the previous Ømega(n √β/ε) lower bound in the for-each model to ~Ω (n √β /ε) and we improve the previous Ω(n β/ε) lower bound in the for-all model to Ω(n β/ε2). This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in a local query model, where we can only access the graph via degree, edge, and adjacency queries. We prove an ΩL(min m, m/ε2k R) lower bound for this problem, which improves the previous ΩL(m/k R) lower bound, where m is the number of edges, k is the minimum cut size, and we seek a (1+ε)-approximation. In addition, we show that existing upper bounds with minor modifications match our lower bound up to logarithmic factors. 
    more » « less
  5. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    The maximum coverage problem is to select k sets, from a collection of m sets, such that the cardinality of their union, in a universe of size n, is maximized. We consider (1-1/e-ε)-approximation algorithms for this NP-hard problem in three standard data stream models. 1) Dynamic Model. The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses ε^{-2} k ⋅ polylog(n,m) space. The best previous result (Assadi and Khanna, SODA 2018) used (n +ε^{-4} k) polylog(n,m) space. While both algorithms use O(ε^{-1} log m) passes, our analysis shows that, when ε ≤ 1/log log m, it is possible to reduce the number of passes by a 1/log log m factor without incurring additional space. 2) Random Order Model. In this model, there are no deletions, and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and k polylog(n,m) space suffices for arbitrary small constant ε. The best previous result, by Warneke et al. (ESA 2023), used k² polylog(n,m) space. 3) Insert-Only Model. Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: polylog(m,n) update time suffices, whereas the best previous result by Jaud et al. (SEA 2023) required update time that was linear in k. 
    more » « less