skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem
We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.  more » « less
Award ID(s):
1750780
PAR ID:
10344289
Author(s) / Creator(s):
; ; ; ;  ; ; ; ; ;
Editor(s):
Goaoc, Xavier; Kerber, Michael
Date Published:
Journal Name:
International Symposium on Computational Geometry (SOCG)
Volume:
224
Issue:
2
Page Range / eLocation ID:
2:1--2:14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  2. Consider an instance of Euclidean k-means or k-medians clustering. We show that the cost of the optimal solution is preserved up to a factor of (1+ε) under a projection onto a random O(log(k /ε) / ε2)-dimensional subspace. Further, the cost of every clustering is preserved within (1+ε). More generally, our result applies to any dimension reduction map satisfying a mild sub-Gaussian-tail condition. Our bound on the dimension is nearly optimal. Additionally, our result applies to Euclidean k-clustering with the distances raised to the p-th power for any constant p. For k-means, our result resolves an open problem posed by Cohen, Elder, Musco, Musco, and Persu (STOC 2015); for k-medians, it answers a question raised by Kannan. 
    more » « less
  3. Abstract This paper proposed a collaborative neurodynamic optimization (CNO) method to solve traveling salesman problem (TSP). First, we construct a Hopfield neural network (HNN) with $$n \times n$$ n × n neurons for the n cities. Second, to ensure the convergence of continuous HNN (CHNN), we reformulate TSP to satisfy the convergence condition of CHNN and solve TSP by CHNN. Finally, a population of CHNNs is used to search for local optimal solutions of TSP and the globally optimal solution is obtained using particle swarm optimization. Experimental results show the effectiveness of the CNO approach for solving TSP. 
    more » « less
  4. The greedy and nearest-neighbor TSP heuristics can both have $$\log n$$ approximation factors from optimal in worst case, even just for $$n$$ points in Euclidean space. In this note, we show that this approximation factor is only realized when the optimal tour is unusually short. In particular, for points from any fixed $$d$$-Ahlfor's regular metric space (which includes any $$d$$-manifold like the $$d$$-cube $[0,1]^d$ in the case $$d$$ is an integer but also fractals of dimension $$d$$ when $$d$$ is real-valued), our results imply that the greedy and nearest-neighbor heuristics have additive errors from optimal on the order of the optimal tour length through random points in the same space, for $d>1$. 
    more » « less
  5. We focus on robotic sensor networks (RSNs), wherein mobile data collectors or robots are dispatched into the sensor field to collect data from the sensor nodes, and study a new algorithmic problem called battery-constrained data collection in RSNs (BC-DCR). Given an RSN of sensor nodes with varying numbers of sensory data packets to be collected and a robot with limited battery power, the goal of the BC-DCR is to dispatch the robot into the sensor field to collect the maximum number of data packets before it runs out of battery power and returns to the depot for recharging. Although extensive research has been conducted to achieve various performance objectives of data collection in RSNs, not much work has focused on the robot’s limited battery power. It is critical to consider the robot’s limited battery power to optimize the data-collecting performance of a large-scale RSN. We show that at the core of the BC-DCR is a new variation of the classic traveling salesman problem called the Budget-Constrained Traveling Salesman Problem (BC-TSP), which has not been adequately solved. We design an Integer Linear Programming (ILP)–based optimal algorithm and a time- efficient iterative greedy algorithm to solve the BC-TSP. Via extensive simulations using real measurements of battery power and mobility models of robots, we show that a) our algorithms outperform the existing work by collecting 29.1% more packets with the same battery power of the robots and b) our BC-TSP- based approach achieves 32.02% more network lifetime of the RSN compared to the existing approach. 
    more » « less