Many problems in the study of dynamical systems—including identification of effective order, detection of nonlinearity or chaos, and change detection—can be reframed in terms of assessing the similarity between dynamical systems or between a given dynamical system and a reference. We introduce a general metric of dynamical similarity that is well posed for both stochastic and deterministic systems and is informative of the aforementioned dynamical features even when only partial information about the system is available. We describe methods for estimating this metric in a range of scenarios that differ in respect to contol over the systems under study, the deterministic or stochastic nature of the underlying dynamics, and whether or not a fully informative set of variables is available. Through numerical simulation, we demonstrate the sensitivity of the proposed metric to a range of dynamical properties, its utility in mapping the dynamical properties of parameter space for a given model, and its power for detecting structural changes through time series data.
more »
« less
Unifying Predictions of Deterministic and Stochastic Physics in Mesh-reduced Space with Sequential Flow Generative Model
Accurate prediction of dynamical systems in unstructured meshes has recently shown successes in scientific simulations. Many dynamical systems have a nonnegligible level of stochasticity introduced by various factors (e.g. chaoticity), so there is a need for a unified framework that captures both deterministic and stochastic components in the rollouts of these systems. Inspired by regeneration learning, we propose a new model that combines generative and sequential networks to model dynamical systems. Specifically, we use an autoencoder to learn compact representations of full-space physical variables in a low-dimensional space. We then integrate a transformer with a conditional normalizing flow model to model the temporal sequence of latent representations. We evaluate the new model in both deterministic and stochastic systems. The model outperforms several competitive baseline models and makes more accurate predictions of deterministic systems. Its own prediction error is also reflected in its uncertainty estimations. When predicting stochastic systems, the proposed model generates high-quality rollout samples. The mean and variance of these samples well match the statistics of samples computed from expensive numerical simulations.
more »
« less
- Award ID(s):
- 2239869
- PAR ID:
- 10496793
- Publisher / Repository:
- Advances in Neural Information Processing Systems
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A probabilistic approach is needed to address systems with uncertainties arising in natural processes and engineering applications. For computational convenience, however, the stochastic effects are often ignored. Thus, numerical integration routines for stochastic dynamical systems are rudimentary compared to those for the deterministic case. In this work, the authors present a method to carry out stochastic simulations by using methods developed for the deterministic case. Thereby, the well-developed numerical integration routines developed for deterministic systems become available for studies of stochastic systems. The convergence of the developed method is shown and the method's performance is demonstrated through illustrative examples.more » « less
-
We introduce adversarial learning methods for data-driven generative modeling of dynamics of n-th-order stochastic systems. Our approach builds on Generative Adversarial Networks (GANs) with generative model classes based on stable m-step stochastic numerical integrators. From observations of trajectory samples, we introduce methods for learning long-time predictors and stable representations of the dynamics. Our approaches use discriminators based on Maximum Mean Discrepancy (MMD), training protocols using both conditional and marginal distributions, and methods for learning dynamic responses over different time-scales. We show how our approaches can be used for modeling physical systems to learn force-laws, damping coefficients, and noise-related parameters. Our adversarial learning approaches provide methods for obtaining stable generative models for dynamic tasks including long-time prediction and developing simulations for stochastic systems.more » « less
-
The behavior of the optimal velocity model is investigated in this paper. Both deterministic and stochastic perturbations are considered in the Optimal velocity model and the behavior of the dynamical systems and their convergence to their associated averaged problems is studied in detail.more » « less
-
Abstract Recent years have seen a surge in interest in building deep learning-based fully data-driven models for weather prediction. Such deep learning models, if trained on observations can mitigate certain biases in current state-of-the-art weather models, some of which stem from inaccurate representation of subgrid-scale processes. However, these data-driven models, being over-parameterized, require a lot of training data which may not be available from reanalysis (observational data) products. Moreover, an accurate, noise-free, initial condition to start forecasting with a data-driven weather model is not available in realistic scenarios. Finally, deterministic data-driven forecasting models suffer from issues with long-term stability and unphysical climate drift, which makes these data-driven models unsuitable for computing climate statistics. Given these challenges, previous studies have tried to pre-train deep learning-based weather forecasting models on a large amount of imperfect long-term climate model simulations and then re-train them on available observational data. In this article, we propose a convolutional variational autoencoder (VAE)-based stochastic data-driven model that is pre-trained on an imperfect climate model simulation from a two-layer quasi-geostrophic flow and re-trained, using transfer learning, on a small number of noisy observations from a perfect simulation. This re-trained model then performs stochastic forecasting with a noisy initial condition sampled from the perfect simulation. We show that our ensemble-based stochastic data-driven model outperforms a baseline deterministic encoder–decoder-based convolutional model in terms of short-term skills, while remaining stable for long-term climate simulations yielding accurate climatology.more » « less
An official website of the United States government
