skip to main content


Title: Nonlinear Optimal Velocity Car Following Dynamics (I): Approximation in Presence of Deterministic and Stochastic Perturbations
The behavior of the optimal velocity model is investigated in this paper. Both deterministic and stochastic perturbations are considered in the Optimal velocity model and the behavior of the dynamical systems and their convergence to their associated averaged problems is studied in detail.  more » « less
Award ID(s):
1727785
NSF-PAR ID:
10190500
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 American Control Conference (ACC)
Page Range / eLocation ID:
410 to 415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The design of robots at the small scale is a trial-and-error based process, which is costly and time-consuming. There are few dynamic simulation tools available to accurately predict the motion or performance of untethered microrobots as they move over a substrate. At smaller length scales, the influence of adhesion and friction, which scales with surface area, becomes more pronounced. Thus, rigid body dynamic simulators, which implicitly assume that contact between two bodies can be modeled as point contact, are not suitable. In this paper, we present techniques for simulating the motion of microrobots where there can be intermittent and non-point contact between the robot and the substrate. We use these techniques to study the motion of tumbling microrobots of different shapes and select shapes that are optimal for improving locomotion performance. Simulation results are verified using experimental data on linear velocity, maximum climbable incline angle, and microrobot trajectory. Microrobots with improved geometry were fabricated, but limitations in the fabrication process resulted in unexpected manufacturing errors and material/size scale adjustments. The developed simulation model can incorporate these limitations and emulate their effect on the microrobot’s motion, reproducing the experimental behavior of the tumbling microrobots, further showcasing the effectiveness of having such a dynamic model. 
    more » « less
  2. Traffic flow models have been the subject of extensive studies for decades. The interest in these models is both as the result of their important applications as well as their complex behavior which makes them theoretically challenging. In this paper, an optimal velocity dynamical model is considered and analyzed.We consider a dynamical model in the presence of perturbation and show that not only such a perturbed system converges to an averaged problem, but also we can show its order of convergence. Such understanding is important from different aspects, and in particular, it shows how well we can approximate a perturbed system with its associated averaged problem. 
    more » « less
  3. Lifting line theory describes the cumulative effect of shed vorticity from finite span lifting surfaces. In this work, the theory is reformulated to improve the accuracy of the actuator line model (ALM). This model is a computational tool used to represent lifting surfaces, such as wind-turbine blades in computational fluid dynamics. In ALM, blade segments are represented by means of a Gaussian body force distribution with a prescribed kernel size. Prior analysis has shown that a representation of the blade using an optimal kernel width $\unicode[STIX]{x1D716}^{opt}$ of approximately one quarter of the chord size results in accurate predictions of the velocity field and loads along the blades. Also, simulations have shown that use of the optimal kernel size yields accurate representation of the tip-vortex size and the associated downwash resulting in accurate predictions of the tip losses. In this work, we address the issue of how to represent the effects of finite span wings and tip vortices when using Gaussian body forces with a kernel size larger than the optimal value. This question is relevant in the context of coarse-scale large-eddy simulations that cannot afford the fine resolutions required to resolve the optimal kernel size. For this purpose, we present a filtered lifting line theory for a Gaussian force distribution. Based on the streamwise component of the vorticity transport equation, we develop an analytical model for the induced velocity resulting from the spanwise changes in lift force for an arbitrary kernel scale. The results are used to derive a subfilter-scale velocity model that is used to correct the velocity along the blade when using kernel sizes larger than $\unicode[STIX]{x1D716}^{opt}$ . Tests are performed in large-eddy simulation of flow over fixed wings with constant and elliptic chord distributions using various kernel sizes. Results show that by using the proposed subfilter velocity model, kernel-size independent predictions of lift coefficient and total lift forces agree with those obtained with the optimal kernel size. 
    more » « less
  4. null (Ed.)
    Compressibility and viscosity of polymer feedstock are critical to their volumetric flow rate, weld strength, and dimensional accuracy in material extrusion additive manufacturing. In this work, the compressibility and viscosity of an acrylonitrile butadiene styrene (ABS) material is characterized with an instrumented hot end design. Experiments are first performed with a blocked nozzle to characterize the compressibility behavior. The results closely emulate the pressure-volume-temperature (PVT) behavior of a characterized generic ABS. Experiments are then performed with an open nozzle over a range of volumetric flow rates and temperatures. The static pressure data is fit to power-law, Ellis, and Cross viscosity models and the dynamic melt pressure data is then used to jointly fit material constitutive models for compressibility and viscosity. The results suggest that the joint fitting substantially improves the fidelity relative to the separately characterized viscosity and compressibility. The implemented methods support material extrusion process simulation and control including real-time identification of process faults such as (1) limited melting capacity of the hot end, (2) skipping (grinding) of the extruder drive gears, (3) low initial nozzle temperature, (4) varying flow rates associated with the intermeshing gear tooth velocity profile, and (5) delays and reduced melt pressures due to drool prior to extrusion. The ability to monitor the printing process for faults in real time, such as that presented in this work, is critical to born qualified parts. Additionally, these approaches can be used to screen new materials and identify optimal processing conditions that avoid these process faults. 
    more » « less
  5. Abstract

    This paper represents an effort to provide robust constraints on the galaxy–halo connection and simultaneously test the Planck ΛCDM cosmology using a fully numerical model of small-scale galaxy clustering. We explore two extensions to the standard Halo Occupation Distribution model: assembly bias, whereby halo occupation depends on both halo mass and the larger environment, and velocity bias, whereby galaxy velocities do not perfectly trace the velocity of the dark matter within the halo. Moreover, we incorporate halo mass corrections to account for the impact of baryonic physics on the halo population. We identify an optimal set of clustering measurements to constrain this “decorated” HOD model for both low- and high-luminosity galaxies in SDSS DR7. We find that, for low-luminosity galaxies, a model with both assembly bias and velocity bias provides the best fit to the clustering measurements, with no tension remaining in the fit. In this model, we find evidence for both central and satellite galaxy assembly bias at the 99% and 95% confidence levels, respectively. In addition, we find evidence for satellite galaxy velocity bias at the 99.9% confidence level. For high-luminosity galaxies, we find no evidence for either assembly bias or velocity bias, but our model exhibits significant tension with SDSS measurements. We find that all of these conclusions still stand when we include the effects of baryonic physics on the halo mass function, suggesting that the tension we find for high-luminosity galaxies may be due to a problem with our assumed cosmological model.

     
    more » « less