skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calculating nonlinear response functions for multidimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion
We present a methodology for simulating multidimensional electronic spectra of molecular aggregates with coupling of electronic excitation to a structured environment using the stochastic non-Markovian quantum state diffusion (NMQSD) method in combination with perturbation theory for the response functions. A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise. We demonstrate that our approach shows fast convergence with respect to the number of stochastic trajectories, providing a promising technique for numerical calculation of two-dimensional electronic spectra of large molecular aggregates.  more » « less
Award ID(s):
2145358 2341178
PAR ID:
10496798
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
11
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present dyadic adaptive HOPS (DadHOPS), a new method for calculating linear absorption spectra for large molecular aggregates. This method combines the adaptive HOPS (adHOPS) framework, which uses locality to improve computational scaling, with the dyadic HOPS method previously developed to calculate linear and nonlinear spectroscopic signals. To construct a local representation of dyadic HOPS, we introduce an initial state decomposition that reconstructs the linear absorption spectra from a sum over locally excited initial conditions. We demonstrate the sum over initial conditions can be efficiently Monte Carlo sampled and that the corresponding calculations achieve size-invariant [i.e., O(1)] scaling for sufficiently large aggregates while trivially incorporating static disorder in the Hamiltonian. We present calculations on the photosystem I core complex to explore the behavior of the initial state decomposition in complex molecular aggregates as well as proof-of-concept DadHOPS calculations on an artificial molecular aggregate inspired by perylene bis-imide to demonstrate the size-invariance of the method. 
    more » « less
  2. Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha's model for one-dimensional systems, positive or negative excitonic couplings lead to blue or red-shifted optical spectra with respect to the monomers, labeled H-and J-aggregates, respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening, and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes in quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an “I-aggregate.” Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha's model. Furthermore, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies. 
    more » « less
  3. Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha's model for one-dimensional systems, positive or negative excitonic couplings lead to blue or red-shifted optical spectra with respect to the monomers, labeled H-and J-aggregates, respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening, and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes in quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an “I-aggregate.” Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha's model. Furthermore, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies. 
    more » « less
  4. Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. DNA is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations—transverse dimer, adjacent dimer, and tetramer—were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes were obtained by simultaneous fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of dye mutual orientation in the aggregates enabled close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next generation systems driven by molecular excitons. 
    more » « less
  5. Porphyrins are prime candidates for a host of molecular electronics applications. Understanding the electronic structure and the role of anchoring groups on porphyrins is a prerequisite for researchers to comprehend their role in molecular devices at the molecular junction interface. Here, we use the density functional theory approach to investigate the influence of anchoring groups on Ni and Zn diphenylporphyrin molecules. The changes in geometry, electronic structure, and electronic descriptors were evaluated. There are minimal changes observed in geometry when changing the metal from Ni to Zn and the anchoring group. However, we find that the distribution of electron density changes when changing the anchoring group in the highest occupied and lowest unoccupied molecular orbitals. This has a direct effect on electronic descriptors such as global hardness, softness, and electrophilicity. Additionally, the optical spectra of both Ni and Zn diphenylporphyrin molecules exhibit either blue or red shifts when changing the anchoring group. These results indicate the importance of the anchoring group on the electronic structure and optical properties of porphyrin molecules. 
    more » « less