skip to main content


This content will become publicly available on March 1, 2025

Title: Gold Nanoparticle-Modified Carbon-Fiber Microelectrodes for the Electrochemical Detection of Cd2+ via Fast-Scan Cyclic Voltammetry

Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood–brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor’s selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+–ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor’s LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain.

 
more » « less
Award ID(s):
2301577
NSF-PAR ID:
10496841
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Micromachines
Volume:
15
Issue:
3
ISSN:
2072-666X
Page Range / eLocation ID:
294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a great demand to broaden our understanding of the multifactorial complex etiology of neurodegenerative diseases to aid the development of more efficient therapeutics and slow down the progression of neuronal cell death. The role of co-transmission and the effect of environmental factors on such diseases have yet to be explored adequately, mainly due to the lack of a proper analytical tool that can perform simultaneous multi-analyte detection in real time with excellent analytical parameters. In this study, we report a simple fabrication protocol of a double-bore carbon-fiber microelectrode (CFM) capable of performing rapid simultaneous detection of neurotransmitters and Cu2+ via fast-scan cyclic voltammetry (FSCV) in Tris buffer. After imaging our CFMs via optical microscopy and scanning electron microscopy to ensure the intact nature of the two electrodes in our electrode composite, we performed a detailed analysis of the performance characteristics of our double-bore CFM in five different analyte mixtures, Cu2+-5HT, Cu2+-DA, Cu2+-AA, 5-HT-DA, and 5-HT-AA in Tris buffer, by applying different analyte-specific FSCV waveforms simultaneously. Calibration curves for each analyte in each mixture were plotted while extracting the analytical parameters such as the limit of detection (LOD), linear range, and sensitivity. We also carried out a control experiment series for the same mixtures with single-bore CFMs by applying one waveform at a time to compare the capabilities of our doublebore CFMs. Interestingly, except for the Cu2+-DA solution, all other combinations showed improved LOD, linear ranges, and sensitivity when detecting simultaneously with double-bore CFMs compared to single-bore CFMs, an excellent finding for developing this sensor for future in vivo applications. 
    more » « less
  2. Abstract

    Hydroxyl radicals (•OH) are well known as crucial chemicals for maintaining the normal activities of human cells; however, the excessive concentration of •OH disrupts their normal function, causing various diseases, including liver and heart diseases, cancers, and neurological disorders. The detection of •OH as a biomarker is thus essential for the early diagnosis of these serious conditions. Herein, a novel electrochemical sensor comprising a composite of cerium oxide nanoclusters, gold nanoparticles, and a highly conductive carbon was developed for detecting •OH. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the signals generated by the interaction of the composite with •OH radicals. The CV results revealed that the developed sensor could accurately and selectively detect •OH in the Fenton reaction. The sensor demonstrated a linear relationship between the current peak and •OH concentration in the range 0.05 - 0.5 mM and 0.5 - 5 mM with a limit of detection (LOD) of 58 µM. In addition, EIS studies indicated that this electrochemical sensor could distinguish between •OH and similar reactive oxygen species (ROS), like hydrogen peroxide (H2O2). It is also worth mentioning that additional merits, such as reproducibility, repeatability, and stability of the sensor were confirmed.

     
    more » « less
  3. Abstract     Organophosphorus pesticides are widely used in industrial agriculture and have been associated with water pollution and negative impacts on local ecosystems and communities. There is a need for testing technologies to detect the presence of pesticide residues in water sources, especially in developing countries where access to standard laboratory methods is cost prohibitive. Herein, we outline the development of a facile electrochemical sensor for amperometric determination of organophosphorus pesticides in environmental water samples. A three-electrode system was fabricated via UV laser-inscribing on a polyimide film. The working electrode was functionalized with copper nanoparticles with affinity toward organophosphate compounds. The sensor showed a limit of detection (LOD) of 3.42 ± 1.69 µM for glyphosate, 7.28 ± 1.20 µM for glufosinate, and 17.78 ± 7.68 µM for aminomethylphosphonic acid (AMPA). Sensitivity was highest for glyphosate (145.52 ± 36.73 nA⋅µM −1 ⋅cm −2 ) followed by glufosinate (56.98 ± 10.87 nA⋅µM −1 ⋅cm −2 ), and AMPA (30.92 ± 8.51 nA⋅µM −1 ⋅cm −2 ). The response of the sensor is not significantly affected by the presence of several ions and organic molecules commonly present in natural water samples. The developed sensor shows promising potential for facilitating environmental monitoring of organophosphorus pesticide residues, which is a current need in several parts of the world. Graphical Abstract 
    more » « less
  4. To sensitively detect multiple and cross-species disease-related targets from a single biological sample in a quick and reliable manner is of high importance in accurately diagnosing and monitoring diseases. Herein, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized multiple-armed tetrahedral DNA nanostructure (FMTDN) immobilized silver nanorod (AgNR) array substrate and Au nanoparticle (AuNP) SERS tags is constructed to achieve both multiplex detection and enhanced sensitivity using a sandwich strategy. The sensor can achieve single, dual, and triple biomarker detections of three lung cancer-related nucleic acid and protein biomarkers, i.e. , miRNA-21, miRNA-486 and carcinoembryonic antigen (CEA) in human serum. The enhanced SERS signals in multiplex detections are due to the DNA self-assembled AuNP clusters on the silver nanorod array during the assay, and the experimentally obtained relative enhancement factor ratios, 150 for AuNP dimers and 840 for AuNP trimers, qualitatively agree with the numerically calculated local electric field enhancements. The proposed FMTDN-functionalized AgNR SERS sensor is capable of multiplex and cross-species detection of nucleic acid and protein biomarkers with improved sensitivity, which has great potential for the screening and clinical diagnosis of cancer in the early stage. 
    more » « less
  5. Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.

     
    more » « less