skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Novel Electrochemical Sensor Based on a Cerium Oxide/Gold/Carbon Nanocompositefor the Detection of Hydroxyl Free Radicals
Abstract Hydroxyl radicals (•OH) are well known as crucial chemicals for maintaining the normal activities of human cells; however, the excessive concentration of •OH disrupts their normal function, causing various diseases, including liver and heart diseases, cancers, and neurological disorders. The detection of •OH as a biomarker is thus essential for the early diagnosis of these serious conditions. Herein, a novel electrochemical sensor comprising a composite of cerium oxide nanoclusters, gold nanoparticles, and a highly conductive carbon was developed for detecting •OH. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the signals generated by the interaction of the composite with •OH radicals. The CV results revealed that the developed sensor could accurately and selectively detect •OH in the Fenton reaction. The sensor demonstrated a linear relationship between the current peak and •OH concentration in the range 0.05 - 0.5 mM and 0.5 - 5 mM with a limit of detection (LOD) of 58 µM. In addition, EIS studies indicated that this electrochemical sensor could distinguish between •OH and similar reactive oxygen species (ROS), like hydrogen peroxide (H2O2). It is also worth mentioning that additional merits, such as reproducibility, repeatability, and stability of the sensor were confirmed.  more » « less
Award ID(s):
2141183
PAR ID:
10405224
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
ISSN:
0013-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    It is well known that an excess of hydroxyl radicals (˙OH) in the human body is responsible for oxidative stress-related diseases. An understanding of the relationship between the concentration of ˙OH and those diseases could contribute to better diagnosis and prevention. Here we present a supersensitive nanosensor integrated with an electrochemical method to measure the concentration of ˙OH in vitro. The electrochemical sensor consists of a composite comprised of ultrasmall cerium oxide nanoclusters (<2 nm) grafted to a highly conductive carbon deposited on a screen-printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the interaction between cerium oxide nanoclusters and ˙OH. The CV results demonstrated that this electrochemical sensor had the capacity of detecting ˙OH with a high degree of accuracy and selectivity, achieving a consistent performance. Additionally, EIS results confirmed that our electrochemical sensor was able to differentiate ˙OH from hydrogen peroxide (H 2 O 2 ), which is another common reactive oxygen species (ROS) found in the human body. The limit of detection (LOD) observed with this electrochemical sensor was of 0.6 μM. Furthermore, this nanosized cerium oxide-based electrochemical sensor successfully detected in vitro the presence of ˙OH in preosteoblast cells from newborn mouse bone tissue. The supersensitive electrochemical sensor is expected to be beneficially used in multiple applications, including medical diagnosis, fuel–cell technology, and food and cosmetic industries. 
    more » « less
  2. Hydroxyl radicals (•OH) are known as essential chemicals for cells to maintain their normal functions and defensive responses. However, a high concentration of •OH may cause oxidative stress-related diseases, such as cancer, inflammation, and cardiovascular disorders. Therefore, •OH can be used as a biomarker to detect the onset of these disorders at an early stage. Reduced glutathione (GSH), a well-known tripeptide for its antioxidant capacity against reactive oxygen species (ROS), was immobilized on a screen-printed carbon electrode (SPCE) to develop a real-time detection sensor with a high selectivity towards •OH. The signals produced by the interaction of the GSH-modified sensor and •OH were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV curve of the GSH-modified sensor in the Fenton reagent exhibited a pair of well-defined peaks, demonstrating the redox reaction of the electrochemical sensor and •OH. The sensor showed a linear relationship between the redox response and the concentration of •OH with a limit of detection (LOD) of 49 µM. Furthermore, using EIS studies, the proposed sensor demonstrated the capability of differentiating •OH from hydrogen peroxide (H2O2), a similar oxidizing chemical. After being immersed in the Fenton solution for 1 hr, redox peaks in the CV curve of the GSH-modified electrode disappeared, revealing that the immobilized GSH on the electrode was oxidized and turned to glutathione disulfide (GSSG). However, it was demonstrated that the oxidized GSH surface could be reversed back to the reduced state by reacting with a solution of glutathione reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH), and possibly reused for •OH detection. 
    more » « less
  3. null (Ed.)
    Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented. 
    more » « less
  4. Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25–150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms. 
    more » « less
  5. A glucose biofuel cell on a flexible bacterial nanocellulose film was prepared. The bioelectrodes were printed using gold ink as the conductive material. The anode was modified with colloidal platinum for the oxidation of glucose. The cathode was modified with a nanocomposite comprising gold nanoparticles (AuNPs) and silver oxide (Ag2O) nanoparticles. The cathode was characterized via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and UV spectroscopy techniques. The assembled biofuel cell generated a maximum open circuit voltage (V oc ) of 0.485 V, short circuit current (I sc ) of 0.352 mA/cm 2 , and a maximum peak power density (P max ) of 0.032 mW/cm 2 when operating in 30 mM concentration. This system showed a stable and linear performance with a linear range of 1 mM to 30 mM glucose. The gold printed electrode process is applicable to the development of wearable and implantable abiotic biofuel cell. 
    more » « less