skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient topology optimization for efficient design of actively cooled microvascular materials
Abstract Microvascular materials containing internal microchannels are able to achieve multi-functionality by flowing different fluids through vasculature. Active cooling is one application to protect structural components and devices from thermal overload, which is critical to modern technology including electric vehicle battery packaging and solar panels on space probes. Creating thermally efficient vascular network designs requires state-of-the-art computational tools. Prior optimization schemes have only considered steady-state cooling, rendering a knowledge gap for time-varying heat transfer behavior. In this study, a transient topology optimization framework is presented to maximize the active-cooling performance and mitigate computational cost. Here, we optimize the channel layout so that coolant flowing within the vascular network can remove heat quickly and also provide a lower steady-state temperature. An objective function for this new transient formulation is proposed that minimizes the area beneath the average temperature versus time curve to simultaneously reduce the temperature and cooling time. The thermal response of the system is obtained through a transient Geometric Reduced Order Finite Element Model (GRO-FEM). The model is verified via a conjugate heat transfer simulation in commercial software and validated by an active-cooling experiment conducted on a 3D-printed microvascular metal. A transient sensitivity analysis is derived to provide the optimizer with analytical gradients of the objective function for further computational efficiency. Example problems are solved demonstrating the method’s ability to enhance cooling performance along with a comparison of transient versus steady-state optimization results. In this comparison, both the steady-state and transient frameworks delivered different designs with similar performance characteristics for the problems considered in this study. This latest computational framework provides a new thermal regulation toolbox for microvascular material designers.  more » « less
Award ID(s):
2143422
PAR ID:
10496848
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Structural and Multidisciplinary Optimization
Volume:
67
Issue:
4
ISSN:
1615-147X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper proposes a computational fluid dynamics (CFD) simulation methodology for the multi-design variable optimization of heat sinks for natural convection single-phase immersion cooling of high power-density Data Center server electronics. Immersion cooling provides the capability to cool higher power-densities than air cooling. Due to this, retrofitting Data Center servers initially designed for air-cooling for immersion cooling is of interest. A common area of improvement is in optimizing the air-cooled component heat sinks for the fluid and thermal properties of liquid cooling dielectric fluids. Current heat sink optimization methodologies for immersion cooling demonstrated within the literature rely on a server-level optimization approach. This paper proposes a server-agnostic approach to immersion cooling heat sink optimization by developing a heat sink-level CFD to generate a dataset of optimized heat sinks for a range of variable input parameters: inlet fluid temperature, power dissipation, fin thickness, and number of fins. The objective function of optimization is minimizing heat sink thermal resistance. This research demonstrates an effective modeling and optimization approach for heat sinks. The optimized heat sink designs exhibit improved cooling performance and reduced pressure drop compared to traditional heat sink designs. This study also shows the importance of considering multiple design variables in the heat sink optimization process and extends immersion heat sink optimization beyond server-dependent solutions. The proposed approach can also be extended to other cooling techniques and applications, where optimizing the design variables of heat sinks can improve cooling performance and reduce energy consumption. 
    more » « less
  2. null (Ed.)
    Abstract There are many applications throughout the military and commercial industries whose thermal profiles are dominated by intermittent and/or periodic pulsed thermal loads. Typical thermal solutions for transient applications focus on providing sufficient continuous cooling to address the peak thermal loads as if operating under steady-state conditions. Such a conservative approach guarantees satisfying the thermal challenge but can result in significant cooling overdesign, thus increasing the size, weight, and cost of the system. Confluent trends of increasing system complexity, component miniaturization, and increasing power density demands are further exacerbating the divergence of the optimal transient and steady-state solutions. Therefore, there needs to be a fundamental shift in the way thermal and packaging engineers approach design to focus on time domain heat transfer design and solutions. Due to the application-dependent nature of transient thermal solutions, it is essential to use a codesign approach such that the thermal and packaging engineers collaborate during the design phase with application and/or electronics engineers to ensure the solution meets the requirements. This paper will provide an overview of the types of transients to consider—from the transients that occur during switching at the chip surface all the way to the system-level transients which transfer heat to air. The paper will cover numerous ways of managing transient heat including phase change materials (PCMs), heat exchangers, advanced controls, and capacitance-based packaging. Moreover, synergies exist between approaches to include application of PCMs to increase thermal capacitance or active control mechanisms that are adapted and optimized for the time constants and needs of the specific application. It is the intent of this transient thermal management review to describe a wide range of areas in which transient thermal management for electronics is a factor of significance and to illustrate which specific implementations of transient thermal solutions are being explored for each area. The paper focuses on the needs and benefits of fundamentally shifting away from a steady-state thermal design mentality to one focused on transient thermal design through application-specific, codesigned approaches. 
    more » « less
  3. Abstract To fulfill the increasing demands of data storage and data processing within modern data centers, a corresponding increase in server performance is necessary. This leads to a subsequent increase in power consumption and heat generation in the servers due to high performance processing units. Currently, air cooling is the most widely used thermal management technique in data centers, but it has started to reach its limitations in cooling of high-power density packaging. Therefore, industries utilizing data centers are looking to singlephase immersion cooling using various dielectric fluids to reduce the operational and cooling costs by enhancing the thermal management of servers. In this study, heat sinks with TPMS lattice structures were designed for application in singlephase immersion cooling of data center servers. These designs are made possible by Electrochemical Additive Manufacturing (ECAM) technology due to their complex topologies. The ECAM process allows for generation of complex heat sink geometries never before possible using traditional manufacturing processes. Geometric complexities including amorphous and porous structures with high surface area to volume ratio enable ECAM heat sinks to have superior heat transfer properties. Our objective is to compare various heat sink geometries by minimizing chip junction temperature in a single-phase immersion cooling setup for natural convection flow regimes. Computational fluid dynamics in ANSYS Fluent is utilized to compare the ECAM heat sink designs. The additively manufactured heat sink designs are evaluated by comparing their thermal performance under natural convection conditions. This study presents a novel approach to heat sink design and bolsters the capability of ECAM-produced heat sinks. 
    more » « less
  4. Abstract Data centers are critical to the functioning of modern society as they host digital infrastructure. However, data centers can consume significant amounts of energy, and a substantial amount of this energy goes to cooling systems. Efficient thermal management of information technology equipment is therefore essential and allows the user to obtain peak performance from a system and enables higher equipment reliability. Thermal management of data center electronics is becoming more challenging due to rising power densities at the chip level. Cooling technologies like single-phase immersion cooling allow overcoming many such challenges owing to their higher thermal mass, lower fluid pumping powers, and potential component reliability enhancements. It is known that immersion cooling deployments require extremely low coolant flow rates, and, in many cases, natural convection can also be used to sufficiently dissipate the heat from the hot server components. It, therefore, becomes difficult to ascertain whether the rate of heat transfer is being dominated by forced or natural convection. This may lead to ambiguity in choosing an optimal heat sink solution and a suitable system mechanical design due to unknown flow regimes, further leading to sub-optimal system performance. Mixed convection can be used to enhance heat transfer in immersion cooling systems. The present investigation quantifies the contribution of mixed convection using numerical methods in an immersion-cooled server. An open compute server with dual CPU sockets is modeled on Ansys Icepak with varying power loads of 115W, 160W and 200W. The chosen dielectric fluid for this single-phase immersion-cooled setup is EC-100. Steady-state Computational Fluid Dynamics (CFD) simulations are conducted for forced, natural, and mixed convection heat transfer in a thermally shadowed server configuration at varying inlet flow rates. A baseline heat sink and an optimized heat sink with an increased fin thickness and reduced fin count are utilized for performance comparison. The effect of varying Reynolds number and Richardson number on the heat transfer rate from the heat sink is discussed to assess the flow regime, stability of the flow around the submerged components which depends on the geometry, orientation, fluid properties, flow rate and direction of the flow. The dimensionless numbers’ influence on heat transfer rate from a conventional air-cooled heat sink in immersion versus an immersion-optimized heat sink is also compared. The impact of server orientation on heat transfer behavior for the immersion optimized heat sink is also studied on heat transfer behavior for the immersion optimized heat sink. 
    more » « less
  5. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less