skip to main content


This content will become publicly available on March 14, 2025

Title: Coevolution and dependency influence resistance of mutualists to exploitation

A long-standing problem in the study of mutualism is to understand the effects of non-mutualistic community members that exploit the benefits of mutualism without offering commodities in exchange (i.e., ‘exploiters’). Mutualisms are continually challenged by exploiters and their persistence may depend on the costliness of exploitation or on adaptations that allow mutualists to avoid the negative effects of exploiters. Coevolution could lead to changes in mutualists and exploiters that allow mutualisms to persist. Although coevolution is considered essential for mutualism persistence and resistance to disturbance, we have yet to obtain direct experimental evidence of the role of coevolution in resistance to exploitation. Additionally, resistance to exploitation via coevolutionary processes might vary with the degree of dependency between mutualistic partners, as facultative mutualisms are thought to be under weaker coevolutionary selection than obligate mutualisms. Here, we conducted an experimental evolution study using a synthetic yeast mutualism to test how coevolution in facultative and obligate mutualisms affects their resistance to exploitation. We found that naïve facultative mutualisms were more likely to breakdown under exploitation than naïve obligate mutualisms. After 15 weeks of coevolution, both facultative and obligate evolved mutualists were more likely to survive exploitation than naïve mutualists when we reassembled mutualist communities. Additionally, coevolved exploiters were more likely to survive with mutualists, whereas naïve exploiters frequently went extinct. These results suggest that coevolution between mutualists and exploiters can lead to mutualism persistence, potentially explaining why exploitation is ubiquitous but rarely associated with mutualism breakdown.

 
more » « less
Award ID(s):
2137555
NSF-PAR ID:
10496926
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers in Ecology and Evolution
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
12
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation. 
    more » « less
  2. Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.

     
    more » « less
  3. Abstract

    Understanding mechanisms that generate range limits is central to knowing why species are found where they are and how they will respond to environmental change. There is growing awareness that biotic interactions play an important role in generating range limits. However, current theory and data overwhelmingly focus on abiotic drivers and antagonistic interactions. Here we explore the effect that mutualists have on their partner's range limits: the geographic “footprint” of mutualism. This footprint arises from two general processes: modification of a partner's niche through environment‐dependent fitness effects and, for a subset of mutualisms, dispersal opportunities that lead suitable habitats to be filled. We developed a conceptual framework that organizes different footprints of mutualism and the underlying mechanisms that shape them, and evaluated supporting empirical evidence from the primary literature. In the available literature, we found that the fitness benefits and dispersal opportunities provided by mutualism can extend species' ranges; conversely, the absence of mutualism can constrain species from otherwise suitable regions of their range. Most studies found that the footprint of mutualism is driven by changes in the frequency of mutualist partners from range core to range edge, whereas fewer found changes in interaction outcomes, the diversity of partners, or varying sensitivities of fitness to the effects of mutualists. We discuss these findings with respect to specialization, dependence, and intimacy of mutualism. Much remains unknown about the geographic footprint of mutualisms, leaving fruitful areas for future work. A particularly important future direction is to explore the role of mutualism during range shifts under global change, including the promotion of shifts at leading edges and persistence at trailing edges.

     
    more » « less
  4. null (Ed.)
    Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators. 
    more » « less
  5. Abstract OPEN RESEARCH BADGES

    This article has earned an Open Data Badge for making publicly available the digitally‐shareable data necessary to reproduce the reported results. The data is available athttps://openscholarship.wustl.edu/data/15/

     
    more » « less