A long-standing problem in the study of mutualism is to understand the effects of non-mutualistic community members that exploit the benefits of mutualism without offering commodities in exchange (i.e., ‘exploiters’). Mutualisms are continually challenged by exploiters and their persistence may depend on the costliness of exploitation or on adaptations that allow mutualists to avoid the negative effects of exploiters. Coevolution could lead to changes in mutualists and exploiters that allow mutualisms to persist. Although coevolution is considered essential for mutualism persistence and resistance to disturbance, we have yet to obtain direct experimental evidence of the role of coevolution in resistance to exploitation. Additionally, resistance to exploitation via coevolutionary processes might vary with the degree of dependency between mutualistic partners, as facultative mutualisms are thought to be under weaker coevolutionary selection than obligate mutualisms. Here, we conducted an experimental evolution study using a synthetic yeast mutualism to test how coevolution in facultative and obligate mutualisms affects their resistance to exploitation. We found that naïve facultative mutualisms were more likely to breakdown under exploitation than naïve obligate mutualisms. After 15 weeks of coevolution, both facultative and obligate evolved mutualists were more likely to survive exploitation than naïve mutualists when we reassembled mutualist communities. Additionally, coevolved exploiters were more likely to survive with mutualists, whereas naïve exploiters frequently went extinct. These results suggest that coevolution between mutualists and exploiters can lead to mutualism persistence, potentially explaining why exploitation is ubiquitous but rarely associated with mutualism breakdown.
more »
« less
Extreme specificity in obligate mutualism—A role for competition?
Abstract Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
more »
« less
- Award ID(s):
- 2137554
- PAR ID:
- 10517842
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.more » « less
-
Abstract Multispecies mutualisms are embedded in a network of interactions that include predation, yet the effects of predation on mutualism function have not been well integrated into mutualism theory. Where predators have been considered, the common prediction is that predators reduce mutualist abundance and, as a consequence, decrease service provision. Here, we use a mathematical model of a predatory fish that consumes two competing coral mutualists to show that predators can also have indirect positive effects on hosts when they preferentially consume competitively dominant mutualists that are also lower in quality. In these cases, predation reverses the outcome of competition, allowing the higher quality mutualist to dominate and enhancing host performance. The direction and strength of predator effects depend on asymmetries in mutualist competition, service provision, and predation vulnerability. Our findings suggest that when the strength of predation shifts (e.g., due to exploitative harvest of top predators, introduction of new species, or range shifts in response to climate change), mutualist communities will exhibit dynamic responses with nonmonotonic effects on host service provision.more » « less
-
Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.more » « less
-
Abstract Understanding mechanisms that generate range limits is central to knowing why species are found where they are and how they will respond to environmental change. There is growing awareness that biotic interactions play an important role in generating range limits. However, current theory and data overwhelmingly focus on abiotic drivers and antagonistic interactions. Here we explore the effect that mutualists have on their partner's range limits: the geographic “footprint” of mutualism. This footprint arises from two general processes: modification of a partner's niche through environment‐dependent fitness effects and, for a subset of mutualisms, dispersal opportunities that lead suitable habitats to be filled. We developed a conceptual framework that organizes different footprints of mutualism and the underlying mechanisms that shape them, and evaluated supporting empirical evidence from the primary literature. In the available literature, we found that the fitness benefits and dispersal opportunities provided by mutualism can extend species' ranges; conversely, the absence of mutualism can constrain species from otherwise suitable regions of their range. Most studies found that the footprint of mutualism is driven by changes in the frequency of mutualist partners from range core to range edge, whereas fewer found changes in interaction outcomes, the diversity of partners, or varying sensitivities of fitness to the effects of mutualists. We discuss these findings with respect to specialization, dependence, and intimacy of mutualism. Much remains unknown about the geographic footprint of mutualisms, leaving fruitful areas for future work. A particularly important future direction is to explore the role of mutualism during range shifts under global change, including the promotion of shifts at leading edges and persistence at trailing edges.more » « less
An official website of the United States government
