skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revealing local order via high energy EELS
Short range order (SRO) is critical in determining the performance of many important engineering materials. However, accurate characterization of SRO with high spatial resolution – which is needed for the study of individual nanoparticles and at material defects and interfaces – is often experimentally inaccessible. Here, we locally quantify SRO via scanning transmission electron microscopy with extended energy loss fine structure analysis. Specifically, we use novel instrumentation to perform electron energy loss spectroscopy out to 12 keV, accessing energies which are conventionally only possible using a synchrotron. Our data is of sufficient energy resolution and signal-to-noise ratio to perform quantitative extended fine structure analysis, which allows determination of local coordination environments. To showcase this technique, we investigate a multicomponent metallic glass nanolaminate and locally quantify the SRO with <10 nm spatial resolution; this measurement would have been impossible with conventional synchrotron or electron microscopy methods. We discuss the nature of SRO within the metallic glass phase, as well as the wider applicability of our approach for determining processing–SRO–property relationships in complex materials.  more » « less
Award ID(s):
1910066
PAR ID:
10496932
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier - Materials Today Nano
Date Published:
Journal Name:
Materials Today Nano
Volume:
21
Issue:
C
ISSN:
2588-8420
Page Range / eLocation ID:
100298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of short-range chemical order can be a key factor in determining the mechanical behavior of metals, but directly and unambiguously determining its distribution in complex concentrated alloy systems can be challenging. Here, we directly identify and quantify chemical order in the globally single phase BCC-TiVNbHf(Al) system using aberration corrected scanning transmission electron microscopy (STEM) paired with spatial statistics methods. To overcome the difficulties of short-range order (SRO) quantification with STEM when the components of an alloy exhibit large atomic number differences and near equiatomic ratios, “null hypothesis” tests are used to separate experiment from a random chemical distribution. Experiment is found to deviate from both the case of an ideal random solid solution and a fully ordered structure with statistical significance. We also identify local chemical order in TiVNbHf and confirm and quantify the enhancement of SRO with the addition of Al. These results provide insight into local chemical order in the promising TiVNbHf(Al) refractory alloys while highlighting the utility of spatial statistics in characterizing nanoscale SRO in compositionally complex systems. 
    more » « less
  2. The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO3 (SRO) films grown on Nb-doped SrTiO3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism (t > 3 uc), the orthorhombic distortions decrease with increasing temperature above TC. Below TC, the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films. 
    more » « less
  3. Abstract Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2Tx. Here, vacuum annealing experiments of Cr2TiC2Txare reported with in situ electron energy loss spectroscopy and novel in situ Cr K‐edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X‐ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 °C results in the complete loss of F, but O termination is thermally stable up to (at least) 700 °C. These findings demonstrate thermal control of F termination in Cr2TiC2Txand offer a first step toward termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials. 
    more » « less
  4. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less
  5. Abstract Glass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature ( T g ) always follows the same trend as the dynamical glass transition (or α -relaxation) temperature ( T α ) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e ., HEMGs with moderate calorimetric T g represent the highest T α and the maximum activation energy of α -relaxation. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances. 
    more » « less