skip to main content

This content will become publicly available on February 14, 2024

Title: Nucleation kinetics model for primary crystallization in Al–Y–Fe metallic glass
The high density of aluminum nanocrystals (>10 21  m −3 ) that develop during the primary crystallization in Al-based metallic glasses indicates a high nucleation rate (∼10 18  m −3  s −1 ). Several studies have been advanced to account for the primary crystallization behavior, but none have been developed to completely describe the reaction kinetics. Recently, structural analysis by fluctuation electron microscopy has demonstrated the presence of the Al-like medium range order (MRO) regions as a spatial heterogeneity in as-spun Al 88 Y 7 Fe 5 metallic glass that is representative for the class of Al-based amorphous alloys that develop Al nanocrystals during primary crystallization. From the structural characterization, an MRO seeded nucleation configuration is established, whereby the Al nanocrystals are catalyzed by the MRO core to decrease the nucleation barrier. The MRO seeded nucleation model and the kinetic data from the delay time ( τ) measurement provide a full accounting of the evolution of the Al nanocrystal density (N v ) during the primary crystallization under isothermal annealing treatments. Moreover, the calculated values of the steady state nucleation rates ( J ss ) predicted by the nucleation model agree with the experimental results. Moreover, the model satisfies constraints more » on the structural, thermodynamic, and kinetic parameters, such as the critical nucleus size, the interface energy, and the volume-free energy driving force that are essential for a fully self-consistent nucleation kinetics analysis. The nucleation kinetics model can be applied more broadly to materials that are characterized by the presence of spatial heterogeneities. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Journal of Chemical Physics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1« less
  2. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  3. Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-ordermore »kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth.« less
  4. In this work, we investigate the synthesis, along with the structural and magnetic properties, of novel Mn-Co-NiO-based heterostructured nanocrystals (HNCs). The objective is to develop novel, well-structurally ordered inverted antiferromagnetic (AFM) NiO–ferrimagnetic (FiM) spinel phase overgrowth HNCs. Inverted HNCs are particularly promising for magnetic device applications because their magnetic properties are more easily controlled by having well-ordered AFM cores, which can result in magnetic structures having large coercivities, tunable blocking temperatures, and other enhanced magnetic effects. The synthesis of the HNCs is accomplished using a two-step process: In the first step, NiO nanoparticles are synthesized using a thermal decomposition method. Subsequently, Mn-Co overgrowth phases are grown on the NiO nanoparticles via hydrothermal nanophase epitaxy, using a fixed pH level (∼5.3) of the aqueous medium. This pH level was selected based on previous work in our laboratory showing that NiO/Mn 3 O 4 HNCs of constant size have optimal coercivity and exchange bias when synthesized at a pH of 5.0. The crystalline structure and gross morphology of the Mn-Co-NiO-based HNCs have been analyzed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. Analysis using these techniques shows that the HNCs are composed of a NiO core and a CoMnmore »2 O 4 overgrowth phase. Rietveld refinement of XRD data shows that the NiO core has the rocksalt (Fm[Formula: see text]m) cubic crystal structure and the CoMn 2 O 4 overgrowth has the spinel ( I4 1 / amd) crystal structure. Moreover, an increased relative amount of the CoMn 2 O 4 overgrowth phase is deposited with decreasing NiO core particle size during the synthesis of the HNCs. The results from PPMS magnetization and high-resolution transmission electron microscopy (HRTEM) characterization of the Mn-Co-NiO-based HNCs are discussed herein.« less
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997.« less