skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing Sensor Allocation Against Attackers With Uncertain Intentions: A Worst-Case Regret Minimization Approach
This letter focuses on the optimal allocation of multi-stage attacks with the uncertainty in attacker’s intention. We model the attack planning problem using a Markov decision process and characterize the uncertainty in the attacker’s intention using a finite set of reward functions—each reward represents a type of attacker. Based on this modeling, we employ the paradigm of the worst-case absolute regret minimization from robust game theory and develop mixed-integer linear program (MILP) formulations for solving the worst-case regret minimizing sensor allocation strategies for two classes of attack-defend interactions: one where the defender and attacker engage in a zero-sum game and another where they engage in a non-zero-sum game. We demonstrate the effectiveness of our algorithm using a stochastic gridworld example.  more » « less
Award ID(s):
2144113
PAR ID:
10496980
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE Control Systems Letters
Date Published:
Journal Name:
IEEE Control Systems Letters
Volume:
7
ISSN:
2475-1456
Page Range / eLocation ID:
2863 to 2868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. arXiv:2402.05300v2 (Ed.)
    This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received. 
    more » « less
  2. Deception is a crucial tool in the cyberdefence repertoire, enabling defenders to leverage their informational advantage to reduce the likelihood of successful attacks. One way deception can be employed is through obscuring, or masking, some of the information about how systems are configured, increasing attacker’s uncertainty about their tar-gets. We present a novel game-theoretic model of the resulting defender- attacker interaction, where the defender chooses a subset of attributes to mask, while the attacker responds by choosing an exploit to execute. The strategies of both players have combinatorial structure with complex informational dependencies, and therefore even representing these strategies is not trivial. First, we show that the problem of computing an equilibrium of the resulting zero-sum defender-attacker game can be represented as a linear program with a combinatorial number of system configuration variables and constraints, and develop a constraint generation approach for solving this problem. Next, we present a novel highly scalable approach for approximately solving such games by representing the strategies of both players as neural networks. The key idea is to represent the defender’s mixed strategy using a deep neural network generator, and then using alternating gradient-descent-ascent algorithm, analogous to the training of Generative Adversarial Networks. Our experiments, as well as a case study, demonstrate the efficacy of the proposed approach. 
    more » « less
  3. We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation. 
    more » « less
  4. We characterize offline data poisoning attacks on Multi-Agent Reinforcement Learning (MARL), where an attacker may change a data set in an attempt to install a (potentially fictitious) unique Markov-perfect Nash equilibrium for a two-player zero-sum Markov game. We propose the unique Nash set, namely the set of games, specified by their Q functions, with a specific joint policy being the unique Nash equilibrium. The unique Nash set is central to poisoning attacks because the attack is successful if and only if data poisoning pushes all plausible games inside it. The unique Nash set generalizes the reward polytope commonly used in inverse reinforcement learning to MARL. For zero-sum Markov games, both the inverse Nash set and the set of plausible games induced by data are polytopes in the Q function space. We exhibit a linear program to efficiently compute the optimal poisoning attack. Our work sheds light on the structure of data poisoning attacks on offline MARL, a necessary step before one can design more robust MARL algorithms. 
    more » « less
  5. Smart grid attacks can be applied on a single component or multiple components. The corresponding defense strategies are totally different. In this paper, we investigate the solutions (e.g., linear programming and reinforcement learning) for one-shot game between the attacker and defender in smart power systems. We designed one-shot game with multi-line- switching attack and solved it using linear programming. We also designed the game with single-line-switching attack and solved it using reinforcement learning. The pay-off and utility/reward of the game is calculated based on the generation loss due to initiated attack by the attacker. Defender's defense action is considered while evaluating the pay-off from attacker's and defender's action. The linear programming based solution gives the probability of choosing best attack actions against different defense actions. The reinforcement learning based solution gives the optimal action to take under selected defense action. The proposed game is demonstrated on 6 bus system and IEEE 30 bus system and optimal solutions are analyzed. 
    more » « less