skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Representations of Atmospheric Rivers and Their Associated Precipitation in Reanalyses With Satellite Observations
Abstract Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the atmosphere. Due to their prominent role in the meridional moisture transport and regional weather extremes, ARs have been studied extensively in recent years. Yet, the representations of ARs and their associated precipitation on a global scale remains largely unknown. In this study, we developed an AR detection algorithm specifically for satellite observations using moisture and the geostrophic winds derived from 3D geopotential height field from the combined retrievals of the Atmospheric Infrared Sounder and the Advanced Microwave Sounding Unit on NASA Aqua satellite. This algorithm enables us to develop the first global AR catalog based solely on satellite observations. The satellite‐based AR catalog is then combined with the satellite‐based precipitation (Integrated Muti‐SatellitE Retrievals for GPM) to evaluate the representations of ARs and AR‐induced precipitation in reanalysis products. Our results show that the spreads in AR frequency and AR length distribution are generally small across data sets, while the spread in AR width is relatively larger. Reanalysis products are found to consistently underestimate both mean and extreme AR‐related precipitation. However, all reanalyses tend to precipitate too often under AR conditions, especially over low latitude regions. This finding is consistent with the “drizzling” bias which has plagued generations of climate models. Overall, the findings of this study can help to improve the representations of ARs and associated precipitation in reanalyses and climate models.  more » « less
Award ID(s):
1832842
PAR ID:
10496982
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance. 
    more » « less
  2. Abstract The Global Navigation Satellite System (GNSS) airborne radio occultation (ARO) technique is used to retrieve profiles of the atmosphere during reconnaissance missions for atmospheric rivers (ARs) on the west coast of the United States. The measurements of refractive bending angle integrate the effects of variations in refractive index over long near‐horizontal ray‐paths from a spaceborne transmitter to a receiver onboard an aircraft. A forward operator is required to assimilate ARO observations, which are sensitive to pressure, temperature, and humidity, into numerical weather prediction models to support forecasting of ARs. A two‐dimensional (2D) bending angle operator is proposed to enable capturing key atmospheric features associated with strong ARs. Comparison to a one‐dimensional (1D) forward model supports the evidence of large bending angle departures within 3–7 km impact heights for observations collected in a region characterized by the integrated water vapor transport (IVT) magnitude above 500 kg . The assessment of the 2D forward model for ARO retrievals is based on a sequence of six flights leading up to a significant AR precipitation event in January 2021. Since the observations often sample regions outside the AR where moisture is low, the significance of horizontal variations is obscured in the average bending angle statistics. Examples from individual flights sampling the cross‐section of an AR support the need for the 2D forward model. Additional simulation experiments are performed to quantify forward modeling errors due to tangent point drift and horizontal gradients suggesting contributions on the order of 5% and 20%, respectively. 
    more » « less
  3. Abstract. Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extremesnowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on WestAntarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using anAntarctic-specific AR detection tool combined with theModern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m−2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m−2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB. 
    more » « less
  4. Abstract We present the Arctic atmospheric river (AR) climatology based on twelve sets of labels derived from ERA5 and MERRA-2 reanalyses for 1980–2019. The ARs were identified and tracked in the 3-hourly reanalysis data with a multifactorial approach based on either atmospheric column-integrated water vapor (IWV) or integrated water vapor transport (IVT) exceeding one of the three climate thresholds (75th, 85th, and 95th percentiles). Time series analysis of the AR event counts from the AR labels showed overall upward trends from the mid-1990s to 2019. The 75th IVT- and IWV-based labels, as well as the 85th IWV-based labels, are likely more sensitive to Arctic surface warming, therefore, detected some broadening of AR-affected areas over time, while the rest of the labels did not. Spatial exploratory analysis of these labels revealed that the AR frequency of occurrence maxima shifted poleward from over-land in 1980–1999 to over the Arctic Ocean and its outlying Seas in 2000–2019. Regions across the Atlantic, the Arctic, to the Pacific Oceans trended higher AR occurrence, surface temperature, and column-integrated moisture. Meanwhile, ARs were increasingly responsible for the rising moisture transport into the Arctic. Even though the increase of Arctic AR occurrence was primarily associated with long-term Arctic surface warming and moistening, the effects of changing atmospheric circulation could stand out locally, such as on the Pacific side over the Chukchi Sea. The changing teleconnection patterns strongly modulated AR activities in time and space, with prominent anomalies in the Arctic-Pacific sector during the latest decade. Besides, the extreme events identified by the 95th-percentile labels displayed the most significant changes and were most influenced by the teleconnection patterns. The twelve Arctic AR labels and the detailed graphics in the atlas can help navigate the uncertainty of detecting and quantifying Arctic ARs and their associated effects in current and future studies. 
    more » « less
  5. Abstract. Atmospheric rivers (ARs) are synoptic-scale features that transport moisture poleward and may cause short-duration, high-volume melt events on the Greenland ice sheet (GrIS). In contrast with traditional climate modeling studies that rely on coarse (1 to 2°) grids, this project investigates the effectiveness of variable-resolution (VR) grids in modeling ARs and their subsequent precipitation using refined grid spacing (0.25 and 0.125°) around the GrIS and 1° grid spacing for the rest of the globe in a coupled land–atmosphere model simulation. VR simulations from the Community Earth System Model version 2.2 (CESM2.2) bridge the gap between the limitations of global and regional climate models while maximizing computational efficiency. ARs from CESM2.2 simulations using three grid types (VR, latitude–longitude, and quasi-uniform) with varying resolutions are compared to outputs from two observation-based reanalysis products, ERA5 and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), using a study period of 1 January 1979 to 31 December 1998. The VR grids produce ARs with smaller areal extents and lower area-integrated precipitation over the GrIS compared to latitude–longitude and quasi-uniform grids. We hypothesize that the smaller areal AR extents in VR grids are due to the refined topography resolved in these grids. In contrast, topographic smoothing in coarser-resolution latitude–longitude and quasi-uniform grids allows ARs to penetrate further inland on the GrIS. Precipitation rates are similar for the VR, latitude–longitude, and quasi-uniform grids; thus the reduced areal extent in VR grids produces lower area-integrated precipitation. The VR grids most closely match the AR overlap extent and precipitation in ERA5 and MERRA-2, suggesting the most realistic behavior among the three configurations. 
    more » « less