skip to main content


Title: PhD Student Funding Patterns: Placing Biomedical, Biological, and Biosystems Engineering in the Context of Engineering Sub-disciplines, Biological Sciences, and Other STEM Disciplines
Abstract

Whether doctoral students are funded primarily by fellowships, research assistantships, or teaching assistantships impacts their degree completion, time to degree, learning outcomes, and short- and long-term career outcomes. Variations in funding patterns have been studied at the broad field level but not comparing engineering sub-disciplines. We addressed two research questions: How do PhD student funding mechanisms vary across engineering sub-disciplines? And how does variation in funding mechanisms across engineering sub-disciplines map onto the larger STEM disciplinary landscape? We analyzed 103,373 engineering and computing responses to the U.S. Survey of Earned Doctorates collected between 2007 and 2016. We conducted analysis of variance with Bonferroni post hoc comparisons to examine variation in funding across sub-disciplines. Then, we conducted a k-means cluster analysis on percentage variables for fellowship, research, and teaching assistantship funding mechanism with STEM sub-discipline as the unit of analysis. A statistically significantly greater percentage of biomedical/biological engineering doctoral students were funded via a fellowship, compared to every other engineering sub-discipline. Consequently, biomedical/biological engineering had significantly lower proportions of students supported via research and teaching assistantships than nearly all other engineering sub-disciplines. We identified five clusters. The majority of engineering sub-disciplines grouped together into a cluster with high research assistantships and low teaching assistantships. Biomedical/biological engineering clustered in the high fellowships grouping with most other biological sciences but no other engineering sub-disciplines. Biomedical/biological engineering behaves much more like biological and life sciences in utilizing fellowships to fund graduate students, far more than other engineering sub-disciplines. Our study provides further evidence of the prevalence of fellowships in life sciences and how it stretches into biomedical/biological engineering. The majority of engineering sub-disciplines relied more on research assistantships to fund graduate study. The lack of uniformity provides an opportunity to diversify student experiences during their graduate programs but also necessitates an awareness to the advantages and disadvantages that different funding portfolios can bestow on students.

 
more » « less
Award ID(s):
2114181 1535226 2114210
PAR ID:
10497057
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biomedical Engineering Education
Volume:
4
Issue:
2
ISSN:
2730-5937
Format(s):
Medium: X Size: p. 199-210
Size(s):
p. 199-210
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although advising relationships are key for doctoral student success, little research has addressed how they form. Understanding the formation of advising relationships can help contextualize their later development and ultimately support a student’s decision to persist in the doctorate. To understand relationship formation, the purpose of this qualitative study is to identify and describe the types of advisor–advisee selection processes that exist in engineering, science, and math doctoral programs and examine patterns across disciplines within those fields. We conducted interviews with doctoral program directors and engaged in document analysis of graduate student handbooks from 55 doctoral programs in the aforementioned fields in high research institutions across the United States. Using principal–agent theory as a theoretical lens, our findings showed that engineering programs tend to decentralize the advisor selection process by funding students across different funding sources upon enrollment. Contrariwise, science and math programs tended to fund all students in a cohort from a common funding source, which allowed students to have more time to gather information, meet, and select an advisor. These findings also show important nuances when comparing graduate education in these programs that directly impact the doctoral student experience and reiterates the necessity to study these fields separately.

     
    more » « less
  2. Abstract

    We summarize national-scale data for Ph.D. earners in engineering or computer science from 2015 to 2019 whose post-graduate school employment is known, highlighting outcomes for biological/biomedical/biosystems engineering students. We use NSF’s Survey of Earned Doctorates (SED), which has collected information from Ph.D. recipients in the USA since 1957. The data are collected at the time of degree completion and constitute a greater than 90% response rate. Compared to all engineering and computer science disciplines, biological/biomedical/biosystems engineering has a higher proportion going to 4yr/med/research institutions (52% vs. 33%) and non-profit (3.6% vs. 2.9%) and lower proportion going to industry (33% vs. 48%), government (4.3% vs. 8.4%), and is similar for non-US positions (6.1% vs. 5.7%). Compared to 2010–2014 biological/biomedical/biosystems engineering Ph.D. recipients, more 2015–2019 recipients are going to industry (25% to 33%) and fewer to 4yr/med/research institutions (59% to 52%) and governmet (5.3% to 4.3%). Across all engineering and computer science disciplines, a smaller proportion of females entered industry (43%) compared to males (49%), while a larger proportion of females entered 4yr/med/research institutions (37%) compared to males (32%). Over half of Asian doctoral recipients entered industry, as compared to 38% of Hispanic doctoral recipients. In contrast, a higher proportion of Hispanic individuals (37%) entered 4yr/med/research institutions after their doctoral programs, as compared to 31% of Asian doctoral recipients. Black doctoral recipients had the highest proportion enter positions in government (14%) and non-profit (4%) sectors. Our results are situated in the broader literature focused on postdoctoral career, training, and employment sectors and trends in STEM. We discuss implications for graduate programs, policymakers, and researchers.

     
    more » « less
  3. This paper examined the role of climate (e.g., interactions with others) in the skill development of engineering and physical science doctoral students. Skill development in graduate school often is connected to students’ primary funding mechanism, which enables students to interact with a research group or teaching team. Advisors also play a pivotal role in the engineering doctoral student experience; however, less is known about how positive mentoring influences specific skill development for engineering doctoral students. Analyzing data from the Graduate Student Funding Survey (n = 615), we focused analyses on three climate Factors (Advising climate; Faculty and staff climate; Peer climate) and specific skill development variables (research, teamwork and project management, peer training and mentoring, and communication). We found that advising climate was statistically significant for all four career-related skills, faculty and staff climate for peer training and mentoring skills only, and peer climate for both peer training and mentoring and communication skills. Our findings highlight the importance of climate from a variety of sources within engineering doctoral programs for the development of career-related skills. 
    more » « less
  4. Purpose The purpose of this study is to examine how doctoral students in the biological sciences understand their research skill development and explore potential racial/ethnic and gender inequalities in the scientific learning process. Design/methodology/approach Based on interviews with 87 doctoral students in the biological sciences, this study explores how doctoral students describe development of their research skills. More specifically, a constructivist grounded theory approach is employed to understand how doctoral students make meaning of their research skill development process and how that may vary by gender and race/ethnicity. Findings The findings reveal two emergent groups, “technicians” who focus on discrete tasks and data collection, and “interpreters” who combine technical expertise with attention to the larger scientific field. Although both groups are developing important skills, “interpreters” have a broader range of skills that support successful scholarly careers in science. Notably, white men are overrepresented among the “interpreters,” whereas white women and students from minoritized racial/ethnic groups are concentrated among the “technicians.” Originality/value While prior literature provides valuable insights into the inequalities across various aspects of doctoral socialization, scholars have rarely attended to examining inequalities in research skill development. This study provides new insights into the process of scientific learning in graduate school. Findings reveal that research skill development is not a uniform experience, and that doctoral education fosters different kinds of learning that vary by gender and race/ethnicity. 
    more » « less
  5. The existing curriculum and models for civil engineering graduate programs assume that graduating Ph.D. students will primarily pursue career opportunities in research or academia. However, the number of civil engineering Ph.D. graduate students continues to increase, while the number of opportunities in academia for civil engineers remains stagnant. As a result, it is becoming increasingly apparent that the civil engineering graduate programs must be reevaluated to assist students entering industry after graduation. As part of a larger research study funded through the NSF Innovations in Graduate Education (IGE), we aim to answer the following research questions: 1) How can a research-to-practice model assist students in preparing for a transportation engineering career outside of academia?, 2) What impacts does the research-to-practice graduate model have on the development of transportation engineering doctoral students’ professional identity?, 3) How does the cognitive apprenticeship framework prepare doctoral students for professional practice in transportation engineering?, and 4) What influences does the research-to-practice model have on doctoral students’ motivation toward degree completion? As part of the first phase for the project, two surveys were developed: a graduate engineering student motivation survey based on Expectancy-Value-Theory, and an instrument based on the Cognitive Apprenticeship framework. The motivation survey was based on an instrument designed and validated by Brown & Matusovich (2013) which aimed to measure undergraduate engineering students' motivation towards obtaining an engineering degree. The survey prompts were reviewed and rewritten to reflect the change in context from undergraduate to graduate school. Revised survey prompts were reviewed with a group of graduate engineering students through a think aloud protocol and changes to the instrument were made to ensure consistency in interpretation of the prompts (Rodriguez-Mejia and Bodnar, 2023). The cognitive apprenticeship instrument was derived from the Maastricht Clinical Teaching Questionnaire (MCTQ), originally designed to offer clinical educators feedback on their teaching abilities, as provided by medical students during their clerkship rotations (Stalmeijer et al., 2010). To tailor it to the context of engineering graduate students, the MCTQ's 24 items were carefully examined and rephrased. A think aloud was conducted with three civil engineering graduate students to determine the effectiveness and clarity of the cognitive apprenticeship instrument. Preliminary results show that minimal clarification is needed for some items, and suggestions to include items which address support from their mentors. The other part of the project assessment involves students completing monthly reflections to obtain their opinions on specific events such as seminars or classes, and identify their perceptions of their identity as professionals, scientists, or researchers. Preliminary results suggest that the students involved place an emphasis on developing critical thinking and planning skills to become an engineering professional, but de-emphasize passion and enjoyment. This paper will report on initial findings obtained through this first phase of the IGE project. 
    more » « less