Abstract Populations declining due to climate change may need to evolve to persist. While evolutionary rescue has been demonstrated in theory and the lab, its relevance to natural populations facing climate change remains unknown. Here we link rapid evolution and population dynamics in scarlet monkeyflower,Mimulus cardinalis, during an exceptional drought. We leverage whole-genome sequencing across 55 populations to identify climate-associated loci. Simultaneously we track demography and allele frequency change throughout the drought. We establish range-wide population decline during the drought, geographically variable rapid evolution, and variable population recovery that is predictable by both standing genetic variation and rapid evolution at climate-associated loci. These findings demonstrate evolutionary rescue in the wild, showing that genomic variability at adaptive, but not neutral loci, predicts population recovery.
more »
« less
Digest: Parks aren’t just for us: city parks as archipelagos for the study of rapid evolution
Abstract Can city parks provide adequate environments for studying rapid evolution? Jackson et al. (2022) found divergent selection is contributing to significant rates of phenotypic divergence across city populations of the eastern water dragon (Intellagama lesueurii), suggesting city green spaces may be ideal for the study of rapid evolution in urban populations.
more »
« less
- Award ID(s):
- 1950051
- PAR ID:
- 10497112
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 77
- Issue:
- 2
- ISSN:
- 0014-3820
- Page Range / eLocation ID:
- 616 to 617
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dams and other anthropogenic barriers have caused global ecological and hydrological upheaval in the blink of the geological eye. In the present article, we synthesize 307 studies in a systematic review of contemporary evolution following reduced connectivity and habitat alteration on freshwater fishes. Genetic diversity loss was more commonly observed for small populations impounded in small habitat patches for many generations behind low-passability barriers. Studies show that impoundments can cause rapid adaptive evolution in migration timing, behavior, life history, temperature tolerance, and morphology, as well as reduce phenotypic variance, which can alter adaptive potential and ecological roles. Fish passage structures can restore migratory populations but also create artificial selection pressures on body size and migration. The accelerating pace of dam removals and the paucity of data for fishes other than salmonids, other vertebrates, invertebrates, and tropical and southern hemisphere organisms highlights the urgent need for more studies on the rapid evolutionary effects of dams.more » « less
-
Abstract When a population experiences severe stress from a changing environment, evolution by natural selection can prevent its extinction, a process dubbed “evolutionary rescue.” However, evolution may be unable to track the sort ofrapidenvironmental change being experienced by many modern‐day populations. A potential solution is for organisms to respond to environmental change through phenotypic plasticity, which can buffer populations against change and thereby buy time for evolutionary rescue. In this review, we examine whether this process extends to situations in which the environmentally induced response is passed to offspring. As we describe, theoretical and empirical studies suggest that such “transgenerational plasticity” can increase population persistence. We discuss the implications of this process for conservation biology, outline potential limitations, and describe some applications. Generally, transgenerational plasticity may be effective at buying time for evolutionary rescue to occur.more » « less
-
null (Ed.)Urban green spaces provide a range of environmental and health benefits, which may become even more critical during times of crisis such as the current COVID-19 pandemic. However, with a radical shift in mobility, additional concerns over safety, and access temporarily restricted during the implementation of social distancing policies, the experience and use of urban green spaces may be reduced. This is particularly concerning for densely populated cities like New York, considered the first U.S. epicenter or vanguard of the outbreak. To better understand the impact of COVID-19 on the perception and use of urban green spaces, we conducted a social survey during the early months of the Covid-19 pandemic in New York City (May 13 - June 15, 2020). The results of the survey show respondents continued to use urban green spaces during the pandemic and consider them to be more important for mental and physical health than before the pandemic began. However, the study revealed a pattern of concerns residents have about green space accessibility and safety, and found key differences between the concerns and needs of different populations, suggesting a crucial role for inclusive decision-making, support for additional management strategies, and urban ecosystem governance that reflect the differential values, needs and concerns of communities across the City. As urban centers face looming budget cuts and reduced capacity, this study provides some empirical evidence to illustrate the value of urban green spaces as critical urban infrastructure, and may have implications for funding, policy, and management, of urban green spaces in NYC, with potential applications to other cities, particularly during times of crisis.more » « less
-
Abstract How underlying mechanisms bias evolution toward predictable outcomes remains an area of active debate. In this study, we leveraged phenotypic plasticity and parallel adaptation across independent lineages of Trinidadian guppies (Poecilia reticulata) to assess the predictability of gene expression evolution during parallel adaptation. Trinidadian guppies have repeatedly and independently adapted to high‐ and low‐predation environments in the wild. We combined this natural experiment with a laboratory breeding design to attribute transcriptional variation to the genetic influences of population of origin and developmental plasticity in response to rearing with or without predators. We observed substantial gene expression plasticity, as well as the evolution of expression plasticity itself, across populations. Genes exhibiting expression plasticity within populations were more likely to also differ in expression between populations, with the direction of population differences more likely to be opposite those of plasticity. While we found more overlap than expected by chance in genes differentially expressed between high‐ and low‐predation populations from distinct evolutionary lineages, the majority of differentially expressed genes were not shared between lineages. Our data suggest alternative transcriptional configurations associated with shared phenotypes, highlighting a role for transcriptional flexibility in the parallel phenotypic evolution of a species known for rapid adaptation.more » « less
An official website of the United States government

