skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing experimental and computational approaches for studying the binding of N-heterocyclic carbenes
N-heterocyclic carbenes (NHCs) have grown in popularity in recent years due to their superior surface stability on metal nanoparticles and surfaces. This stability is often characterized experimentally by studying the σ-donation and π-backbonding as measured through NHC-selenium adduct NMR and the Huynh Electronic Parameter (HEP), respectively. However, recent work with NHCs on metal clusters suggests that the ligands can adopt a variety of orientations on the surface. Thus, the surface may have a pronounced impact on the σ-donation and π-backbonding observed for these NHCs. In this work, we aim to determine how well these experimental characterizations compare to trends observed via bond decomposition analysis.  more » « less
Award ID(s):
2142874
PAR ID:
10497195
Author(s) / Creator(s):
;
Publisher / Repository:
sciMeetings
Date Published:
Journal Name:
ACS Spring 2024
Format(s):
Medium: X
Location:
New Orleans
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The discovery of NHCs (NHC = N‐heterocyclic carbenes) as ancillary ligands in transition‐metal‐catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well‐recognized that the strong σ‐donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N‐wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well‐established, recently tremendous progress has been made in the development and catalytic applications of BIAN‐NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN‐NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN‐NHC ligands take advantage of (1) the stronger σ‐donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π‐system, (4) the rigid backbone that pushes the N‐wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air‐stability of BIAN‐NHC‐metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross‐coupling and C−H activation endeavors. 
    more » « less
  2. We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-CC-R) that affords a high grafting density. The ligand−metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG−PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands. 
    more » « less
  3. Abstract Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C–C and C–heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate thatN-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis. 
    more » « less
  4. null (Ed.)
    Although unsaturated organotrifluoroborates are common synthons in metal–organic chemistry, their transition metal complexes have received little attention. [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Cu(CH 2 CHBF 3 ), (SIPr)Cu(MeCN)(CH 2 CHBF 3 ) and [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Ag(CH 2 CHBF 3 ) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) (M = Cu, Ag) with relatively closer M–C(H) 2 distances. The computed structures of [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) and M(CH 2 CHBF 3 ), however, have shorter M–C(H)BF 3 distances than M–C(H) 2 . These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF 3 group, possibly affecting these M–C distances. The binding energies of [CH 2 CHBF 3 ] − to Cu + , Ag + and Au + have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH 2 (3,5-(CH 3 ) 2 Pz) 2 . The calculation shows that Au + has the strongest binding to the [CH 2 CHBF 3 ] − ligand, followed by Cu + and Ag + , irrespective of the presence of the supporting ligand. However, in all three metals, the supporting ligand weakens the binding of olefin to the metal. The same trends were also found from the analysis of the σ-donation and π-backbonding interactions between the metal fragment and the π and π* orbitals of [CH 2 CHBF 3 ] − . 
    more » « less
  5. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less