skip to main content


Title: Manipulating the reliability of target-color information modulates value-driven attentional capture
Abstract

Previously rewarded stimuli slow response times (RTs) during visual search, despite being physically non-salient and no longer task-relevant or rewarding. Such value-driven attentional capture (VDAC) has been measured in a training-test paradigm. In the training phase, the search target is rendered in one of two colors (one predicting high reward and the other low reward). In this study, we modified this traditional training phase to include pre-cues that signaled reliable or unreliable information about the trial-to-trial color of the training phase search target. Reliable pre-cues indicated the upcoming target color with certainty, whereas unreliable pre-cues indicated the target was equally likely to be one of two distinct colors. Thus reliable and unreliable pre-cues provided certain and uncertain information, respectively, about the magnitude of the upcoming reward. We then tested for VDAC in a traditional test phase. We found that unreliably pre-cued distractors slowed RTs and drew more initial eye movements during search for the test-phase target, relative to reliably pre-cued distractors, thus providing novel evidence for an influence of information reliability on attentional capture. That said, our experimental manipulation also eliminatedvalue-dependency(i.e.,slowed RTs when a high-reward-predicting distractor was present relative to a low-reward-predicting distractor) for both kinds of distractors. Taken together, these results suggest that target-color uncertainty, rather than reward magnitude, played a critical role in modulating the allocation of value-driven attention in this study.

 
more » « less
NSF-PAR ID:
10497263
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Attention, Perception, & Psychophysics
ISSN:
1943-3921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry of color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience.

     
    more » « less
  2. Abstract

    Previous work shows that automatic attention biases toward recently selected target features transfer across action and perception and even across different effectors such as the eyes and hands on a trial-by-trial basis. Although these findings suggest a common neural representation of selection history across effectors, the extent to which information about recently selected target features is encoded in overlapping versus distinct brain regions is unknown. Using fMRI and a priming of pop-out task where participants selected unpredictable, uniquely colored targets among homogeneous distractors via reach or saccade, we show that color priming is driven by shared, effector-independent underlying representations of recent selection history. Consistent with previous work, we found that the intraparietal sulcus (IPS) was commonly activated on trials where target colors were switched relative to those where the colors were repeated; however, the dorsal anterior insula exhibited effector-specific activation related to color priming. Via multivoxel cross-classification analyses, we further demonstrate that fine-grained patterns of activity in both IPS and the medial temporal lobe encode information about selection history in an effector-independent manner, such that ROI-specific models trained on activity patterns during reach selection could predict whether a color was repeated or switched on the current trial during saccade selection and vice versa. Remarkably, model generalization performance in IPS and medial temporal lobe also tracked individual differences in behavioral priming sensitivity across both types of action. These results represent a first step to clarify the neural substrates of experience-driven selection biases in contexts that require the coordination of multiple actions.

     
    more » « less
  3. Abstract

    The organization of our knowledge about the world into an interconnected network of concepts linked by relations profoundly impacts many facets of cognition, including attention, memory retrieval, reasoning, and learning. It is therefore crucial to understand how organized semantic representations are acquired. The present experiment investigated the contributions of readily observable environmental statistical regularities to semantic organization in childhood. Specifically, we investigated whether co‐occurrence regularities with which entities or their labels more reliably occur together than with others (a) contribute to relations between concepts independently and (b) contribute to relations between concepts belonging to the same taxonomic category. Using child‐directed speech corpora to estimate reliable co‐occurrences between labels for familiar items, we constructed triads consisting of a target, a related distractor, and an unrelated distractor in which targets and related distractors consistently co‐occurred (e.g., sock‐foot), belonged to the same taxonomic category (e.g., sock‐coat), or both (e.g., sock‐shoe). We used an implicit, eye‐gaze measure of relations between concepts based on the degree to which children (N = 72, age 4–7 years) looked at related versus unrelated distractors when asked to look for a target. The results indicated that co‐occurrence both independently contributes to relations between concepts and contributes to relations between concepts belonging to the same taxonomic category. These findings suggest that sensitivity to the regularity with which different entities co‐occur in children's environments shapes the organization of semantic knowledge during development. Implications for theoretical accounts and empirical investigations of semantic organization are discussed.

     
    more » « less
  4. Here, we report on the long-term stability of changes in behavior and brain activity following perceptual learning of conjunctions of simple motion features. Participants were trained for 3 weeks on a visual search task involving the detection of a dot moving in a “v”-shaped target trajectory among inverted “v”-shaped distractor trajectories. The first and last training sessions were carried out during functional magnetic resonance imaging (fMRI). Learning stability was again examined behaviorally and using fMRI 3 years after the end of training. Results show that acquired behavioral improvements were remarkably stable over time and that these changes were specific to trained target and distractor trajectories. A similar pattern was observed on the neuronal level, when the representation of target and distractor stimuli was examined in early retinotopic visual cortex (V1–V3): training enhanced activity for the target relative to the surrounding distractors in the search array and this enhancement persisted after 3 years. However, exchanging target and distractor trajectories abolished both neuronal and behavioral effects, suggesting that training-induced changes in stimulus representation are specific to trained stimulus identities. 
    more » « less
  5. For flexible goal-directed behavior, prioritizing and selecting a specific action among multiple candidates is often important. Working memory has long been assumed to play a role in prioritization and planning, while bridging cross-temporal contingencies during action selection. However, studies of working memory have mostly focused on memory for single components of an action plan, such as a rule or a stimulus, rather than management of all of these elements during planning. Therefore, it is not known how post-encoding prioritization and selection operate on the entire profile of representations for prospective actions. Here, we assessed how such control processes unfold over action representations, highlighting the role of conjunctive representations that nonlinearly integrate task-relevant features during maintenance and prioritization of action plans. For each trial, participants prepared two independent rule-based actions simultaneously, then they were retro-cued to select one as their response. Prior to the start of the trial, one rule-based action was randomly assigned to be high priority by cueing that it was more likely to be tested. We found that both full action plans were maintained as conjunctive representations during action preparation, regardless of priority. However, during output selection, the conjunctive representation of the high priority action plan was more enhanced and readily selected as an output. Further, the strength of the high priority conjunctive representation was associated with behavioral interference when the low priority action was tested. Thus, multiple alternate upcoming actions were maintained as integrated representations and served as the target of post-encoding attentional selection mechanisms to prioritize and select an action from within working memory. 
    more » « less