Lane College is a Historically Black College with a mission to educate underserved minority students. As part of a primarily undergraduate teaching institution, the Division of Natural and Physical Sciences provides students with a variety of hands-on experiences, including an eight-week summer research experience. Prior to the implementation of the Lane College summer research experience, only a small number of students participated in summer research or internships at other institutions. The Lane College summer undergraduate research experience aims to be more inclusive by eliminating GPA requirements, encouraging first- and second-year students to apply, and allowing students to select any of the available research projects in the areas of biology, chemistry, computer science, mathematics, or physics, regardless of major. Each year, twelve to fifteen students participate in mentored research in the areas of biology, chemistry, computer science, mathematics, and physics. The students participate in a professional development course twice per week where they learn about career opportunities in science and mathematics, preparing personal statements, scientific writing, and practice on how to effectively present their research findings. The students conduct their research in small groups with a faculty mentor. At the end of the summer, students present their overall results at the Lane Summer Science Symposium. Evaluation of student attitudes towards the research experience during the first iteration in summer 2021 indicates students internalized STEM community values, and developed a sense of self-efficacy for research, a strong sense of project ownership, and a sense of belonging to the science research community. Students participating in the evaluation believe that the experience made science more interesting and that they have better clarity of career opportunities in STEM. Similar levels of engagement were observed in the summers of 2022 and 2023. Students participating in the program are encouraged to submit abstracts to both regional and national conferences. This has resulted in 14 students presenting annually at discipline-specific conferences and one publication co-authored by two summer research students. This work is supported by grants NSF EES 2011938 and EDU 1833960.
more »
« less
Initial Observations of a Community College Microsystem Fabrication-focused Undergraduate Research Experience
Providing hands-on learning experiences increases student understanding of theory and practices in STEM (science, technology, engineering, and mathematics) fields. The experience gives students motivation and allows them to focus their career path towards completing a degree in a STEM field. This paper provides initial observations on the learning impact of community college students and their instructors participating in the Support Center for Microsystems Education 2021 Undergraduate Research Experience. Twenty undergraduate community college students and their instructors participated in a week-long hands-on project-based course in a cleanroom environment. Both students and instructors showed an increase in the level of knowledge regarding microfabricating based on the collected survey results after completing the program. Survey results and observations of participating mentors are presented.
more »
« less
- Award ID(s):
- 2000281
- PAR ID:
- 10497328
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of advanced technological education
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2832-9635
- Page Range / eLocation ID:
- 4-12
- Subject(s) / Keyword(s):
- undergraduate education community college MEMS Cleanroom Microfabrication
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program.more » « less
-
The Association of American Colleges and Universities identifies undergraduate research experiences as a high impact practice for increasing student success and retention in STEM majors. Most undergraduate research opportunities for community college engineering students involve partnerships with universities and typically take the form of paid summer experiences. Course-based Undergraduate Research Experiences (CUREs) offer an alternative model with potential for significant expansion of research opportunities for students. This approach weaves research into the courses students are already required to complete for their degrees. CUREs are an equitable approach for introducing students to research because they do not demand extracurricular financial and/or time commitments beyond what students must already commit to for their courses. This paper describes an adaptable model for implementing a CURE in an introductory engineering design and computing course that features applications of low-cost microcontrollers. Students work toward course learning outcomes focused on computer programming, engineering design processes, and effective teamwork in the context of multi-term research and development efforts to design, build, and test devices for other CUREs in science lab courses as well as for other applications at the college or with community partners. Students choose from a menu of projects each term, with a typical course offering involving four to six different projects running simultaneously. Each team identifies a focused design and development scope of work within the larger context of the project they are interested in. They give weekly progress reports and gather input from their customers. The work culminates in a prototype and final report to document their work for student teams who will carry it forward in future terms. We assessed the impact of the experience on students’ beliefs about science and engineering, STEM confidence, and career aspirations using a nationally normed survey for CUREs in STEM and report results from five terms of offering this course. We find statistically significant pre-post gains on two-thirds of the survey items relating to students’ understanding of the research process and confidence in their STEM abilities. The pre-post gains are generally comparable to those reported by others who used the same survey to assess the impact of a summer research experience for community college students. These findings indicate that the benefits of student participation in this CURE model are comparable to the benefits students see by participation in summer research programs.more » « less
-
null (Ed.)Undergraduate research opportunities have been demonstrated to promote recruitment, retention, and inclusion of students from underrepresented groups in STEM disciplines. The opportunity to engage in hands-on, discovery-based activities as part of a community helps students develop a strong self-identity in STEM and strengthens their self-efficacy in what can otherwise be daunting fields. Kansas State University has developed an array of undergraduate research opportunities, both in the academic year and summer, and has established a management infrastructure around these programs. The Graduate School, which hosts its own Summer Undergraduate Research Opportunity Program aimed at URM and first-generation college students, coordinates the leadership of the other grant-funded programs, and conducts a series of enrichment and networking activities for students from all the programs. These include professional development as well as primarily social sessions. The Kansas LSAMP, led by Kansas State University, created a summer program aimed at under-represented minority community college students enrolled in STEM fields to recruit them into research opportunities at K-State. There has been strong interest in the program, which incorporated university experience elements in addition to an introduction to STEM research and the four-year university. In the 5 years since the program’s inception, cohorts of nine to fourteen students came to K-State each year for eight-week experiences and took part in both cohort-based sessions and individual mentored research experiences. The two-fold focus of this program, Research Immersion: Pathways to STEM, has resulted in the majority of the students presenting a poster at a national conference and transferring to a STEM major at a four-year institution. Survey results showed that the program was successful at improving STEM identity and academic self-concepts. Qualitative feedback suggested that the two parts of the program worked together to increase interest and self confidence in STEM majors but also ensured that students connect with other students and felt comfortable in the transition to a 4-year institution.more » « less
-
Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences.more » « less
An official website of the United States government

