Abstract The rapidly advancing capabilities in nanophotonic design are enabling complex functionalities limited mainly by physical bounds. The efficiency of transmission is a major consideration, but its ultimate limit remains unknown for most systems. This study introduces a matrix formalism that puts a fundamental bound on the channel‐averaged transmission efficiency of any passive multi‐channel optical system based only on energy conservation and the desired functionality, independent of the interior structure and material composition. Applying this formalism to diffraction‐limited nonlocal metalenses with a wide field of view shows that the transmission efficiency must decrease with the numerical aperture for the commonly adopted designs with equal entrance and output aperture diameters. It also shows that reducing the size of the entrance aperture can raise the efficiency bound. This study reveals a fundamental limit on the transmission efficiency as well as provides guidance for the design of high‐efficiency multi‐channel optical systems.
more »
« less
High-efficiency high-numerical-aperture metalens designed by maximizing the efficiency limit
Theoretical bounds are commonly used to assess the limitations of photonic design. Here we introduce a more active way to use theoretical bounds, integrating them into part of the design process and identifying optimal system parameters that maximize the efficiency limit itself. As an example, we consider wide-field-of-view high-numerical-aperture metalenses, which can be used for high-resolution imaging in microscopy and endoscopy, but no existing design has achieved a high efficiency. By choosing aperture sizes to maximize an efficiency bound, setting the thickness according to a thickness bound, and then performing inverse design, we come up with high-numerical-aperture (NA=0.9) metalens designs with, to our knowledge, record-high 98% transmission efficiency and 92% Strehl ratio across all incident angles within a 60° field of view, reaching the maximized bound. This maximizing-efficiency-limit approach applies to any multi-channel system and can help a wide range of optical devices reach their highest possible performance.
more »
« less
- Award ID(s):
- 2146021
- PAR ID:
- 10497476
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 11
- Issue:
- 4
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 454
- Size(s):
- Article No. 454
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metalenses—flat lenses made with optical metasurfaces—promise to enable thinner, cheaper, and better imaging systems. Achieving a sufficient angular field of view (FOV) is crucial toward that goal and requires a tailored incident-angle-dependent response. Here, we show that there is an intrinsic trade-off between achieving a desired broad-angle response and reducing the thickness of the device. Like the memory effect in disordered media, this thickness bound originates from the Fourier transform duality between space and angle. One can write down the transmission matrix describing the desired angle-dependent response, convert it to the spatial basis where its degree of nonlocality can be quantified through a lateral spreading, and determine the minimal device thickness based on such a required lateral spreading. This approach is general. When applied to wide-FOV lenses, it predicts the minimal thickness as a function of the FOV, lens diameter, and numerical aperture. The bound is tight, as some inverse-designed multi-layer metasurfaces can approach the minimal thickness we found. This work offers guidance for the design of nonlocal metasurfaces, proposes a new framework for establishing bounds, and reveals the relation between angular diversity and spatial footprint in multi-channel systems.more » « less
-
Recently, augmented reality (AR) displays have attracted considerable attention due to the highly immersive and realistic viewer experience they can provide. One key challenge of AR displays is the fundamental trade-off between the extent of the field-of-view (FOV) and the size of the eyebox, set by the conservation of etendue sets this trade-off. Exit-pupil expansion (EPE) is one possible solution to this problem. However, it comes at the cost of distributing light over a larger area, decreasing the overall system's brightness. In this work, we show that the geometry of the waveguide and the in-coupler sets a fundamental limit on how efficient the combiner can be for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their in-coupler gratings. We design a metasurface-based grating (metagrating) and a commonly used SRG as in-couplers using the derived limit to guide optimization. We then compare the diffractive efficiencies of the two types of in-couplers to the theoretical efficiency limit. For our chosen waveguide geometry, the metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides new insight into the efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays.more » « less
An official website of the United States government
