skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-efficiency high-numerical-aperture metalens designed by maximizing the efficiency limit
Theoretical bounds are commonly used to assess the limitations of photonic design. Here we introduce a more active way to use theoretical bounds, integrating them into part of the design process and identifying optimal system parameters that maximize the efficiency limit itself. As an example, we consider wide-field-of-view high-numerical-aperture metalenses, which can be used for high-resolution imaging in microscopy and endoscopy, but no existing design has achieved a high efficiency. By choosing aperture sizes to maximize an efficiency bound, setting the thickness according to a thickness bound, and then performing inverse design, we come up with high-numerical-aperture (NA=0.9) metalens designs with, to our knowledge, record-high 98% transmission efficiency and 92% Strehl ratio across all incident angles within a 60° field of view, reaching the maximized bound. This maximizing-efficiency-limit approach applies to any multi-channel system and can help a wide range of optical devices reach their highest possible performance.  more » « less
Award ID(s):
2146021
PAR ID:
10497476
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
11
Issue:
4
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 454
Size(s):
Article No. 454
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rapidly advancing capabilities in nanophotonic design are enabling complex functionalities limited mainly by physical bounds. The efficiency of transmission is a major consideration, but its ultimate limit remains unknown for most systems. This study introduces a matrix formalism that puts a fundamental bound on the channel‐averaged transmission efficiency of any passive multi‐channel optical system based only on energy conservation and the desired functionality, independent of the interior structure and material composition. Applying this formalism to diffraction‐limited nonlocal metalenses with a wide field of view shows that the transmission efficiency must decrease with the numerical aperture for the commonly adopted designs with equal entrance and output aperture diameters. It also shows that reducing the size of the entrance aperture can raise the efficiency bound. This study reveals a fundamental limit on the transmission efficiency as well as provides guidance for the design of high‐efficiency multi‐channel optical systems. 
    more » « less
  2. Abstract Metalenses—flat lenses made with optical metasurfaces—promise to enable thinner, cheaper, and better imaging systems. Achieving a sufficient angular field of view (FOV) is crucial toward that goal and requires a tailored incident-angle-dependent response. Here, we show that there is an intrinsic trade-off between achieving a desired broad-angle response and reducing the thickness of the device. Like the memory effect in disordered media, this thickness bound originates from the Fourier transform duality between space and angle. One can write down the transmission matrix describing the desired angle-dependent response, convert it to the spatial basis where its degree of nonlocality can be quantified through a lateral spreading, and determine the minimal device thickness based on such a required lateral spreading. This approach is general. When applied to wide-FOV lenses, it predicts the minimal thickness as a function of the FOV, lens diameter, and numerical aperture. The bound is tight, as some inverse-designed multi-layer metasurfaces can approach the minimal thickness we found. This work offers guidance for the design of nonlocal metasurfaces, proposes a new framework for establishing bounds, and reveals the relation between angular diversity and spatial footprint in multi-channel systems. 
    more » « less
  3. We show that any aberration-free wide-field-of-view lens system must have a minimal thickness—depending on the field of view, lens diameter, and numerical aperture—that originates from the Fourier transform relation between space and angle. 
    more » « less
  4. We derive a fundamental bound on the transmission efficiency of diffraction-limited nonlocal metalenses. We show that high efficiency at large numerical aperture re-quires the entrance aperture to be smaller than the output aperture. 
    more » « less
  5. Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases the total fluorescence collection, reduces the background, and improves the overall signal-to-noise ratio (SNR), as shown by numerical simulations, imaging of bead phantoms, and imaging living animals. In comparison to conventional light sheet imaging with low-NA detection that yields equivalent DOF, the results show that ExD-SPIM increases the SNR by more than threefold and dramatically reduces the rate of photobleaching. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third. 
    more » « less