skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The reproductive microbiome and maternal transmission of microbiota via eggs in Sceloporus virgatus
Abstract Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues—oviduct, cloaca, and intestine—to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.  more » « less
Award ID(s):
1755408
PAR ID:
10497538
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
100
Issue:
3
ISSN:
1574-6941
Subject(s) / Keyword(s):
egg microbiome gut microbiome high-throughput sequencing maternal transmission reproductive microbiome reptiles
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Beneficial microbes can be vertically transmitted from mother to offspring in many organisms. In oviparous animals, bacterial transfer to eggs may improve egg success by inhibiting fungal attachment and infection from pathogenic microbes in the nest environment. Vertical transfer of these egg-protective bacteria may be facilitated through behavioral mechanisms such as egg-tending, but many species do not provide parental care. Thus, an important mechanism of vertical transfer may be the passage of the egg through the maternal cloaca during oviposition itself. In this study, we examined how oviposition affects eggshell microbial communities, fungal attachment, hatch success, and offspring phenotype in the striped plateau lizard, Sceloporus virgatus , a species with no post-oviposition parental care. Results Relative to dissected eggs that did not pass through the cloaca, oviposited eggs had more bacteria and fewer fungal hyphae when examined with a scanning electron microscope. Using high throughput Illumina sequencing, we also found a difference in the bacterial communities of eggshells that did and did not pass through the cloaca, and the diversity of eggshell communities tended to correlate with maternal cloacal diversity only for oviposited eggs, and not for dissected eggs, indicating that vertical transmission of microbes is occurring. Further, we found that oviposited eggs had greater hatch success and led to larger offspring than those that were dissected. Conclusions Overall, our results indicate that female S. virgatus lizards transfer beneficial microbes from their cloaca onto their eggs during oviposition, and that these microbes reduce fungal colonization and infection of eggs during incubation and increase female fitness. Cloacal transfer of egg-protective bacteria may be common among oviparous species, and may be especially advantageous to species that lack parental care. 
    more » « less
  2. Ruiz-Rodriguez, Magdalena (Ed.)
    Animals and their microbiomes exert reciprocal influence; the host’s environment, physiology, and phylogeny can impact the composition of the microbiome, while the microbes present can affect host behavior, health, and fitness. While some microbiomes are highly malleable, specialized microbiomes that provide important functions can be more robust to environmental perturbations. Recent evidence suggests Sceloporus virgatus has one such specialized microbiome, which functions to protect eggs from fungal pathogens during incubation. Here, we examine the cloacal microbiome of three different Sceloporus species (spiny lizards; Family Phrynosomatidae)– Sceloporus virgatus , Sceloporus jarrovii , and Sceloporus occidentalis . We compare two species with different reproductive modes (oviparous vs. viviparous) living in sympatry: S . virgatus and S . jarrovii . We compare sister species living in similar habitats (riparian oak-pine woodlands) but different latitudes: S . virgatus and S . occidentalis . And, we compare three populations of one species ( S . occidentalis ) living in different habitat types: beach, low elevation forest, and the riparian woodland. We found differences in beta diversity metrics between all three comparisons, although those differences were more extreme between animals in different environments, even though those populations were more closely related. Similarly, alpha diversity varied among the S . occidentalis populations and between S . occidentalis and S . virgatus , but not between sympatric S . virgatus and S . jarrovii . Despite these differences, all three species and all three populations of S . occcidentalis had the same dominant taxon, Enterobacteriaceae . The majority of the variation between groups was in low abundance taxa and at the ASV level; these taxa are responsive to habitat differences, geographic distance, and host relatedness. Uncovering what factors influence the composition of wild microbiomes is important to understanding the ecology and evolution of the host animals, and can lead to more detailed exploration of the function of particular microbes and the community as a whole. 
    more » « less
  3. Microbial diversity and community function are related, and can be highly specialized in different gut regions. The cloacal microbiome of Sceloporus virgatus females provides antifungal protection to eggshells, a specialized function that suggests a specialized microbiome. Here, we describe the cloacal, intestinal, and oviductal microbiome from S. virgatus gravid females, adding to growing evidence of microbiome localization in reptiles and other taxa. We further assessed whether common methods for sampling gastrointestinal (GI) microbes – cloacal swabs and feces – provide accurate representations of these microbial communities. We found that different regions of the gut had unique microbial communities. The cloacal microbiome showed extreme specialization averaging 99% Proteobacteria (Phylum) and 83% Enterobacteriacaea (Family). Enterobacteriacaea decreased up the GI and reproductive tracts. Cloacal swabs recovered communities similar to that of lower intestine and cloacal tissues. In contrast, fecal samples had much higher diversity and a distinct composition (common Phyla: 62% Firmicutes, 18% Bacteroidetes, 10% Proteobacteria; common Families: 39% Lachnospiraceae, 11% Ruminococcaceae, 11% Bacteroidaceae) relative to all gut regions. The common families in fecal samples made up < 1% of cloacal tissue samples, increasing to 43% at the upper intestine. Similarly, the common families in gut tissue (Enterobacteriaceae and Helicobacteraceae) made up < 1% of the fecal microbiome. Further, we found that cloacal swabs taken shortly after defecation may be contaminated with fecal matter. Our results serve as a caution against using feces as a proxy for GI microbes, and may help explain high between-sample variation seen in some studies using cloacal swabs. 
    more » « less
  4. Abstract Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population‐level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations. 
    more » « less
  5. Much is known about how the maternal environment can shape offspring traits via intergenerational effects. It is less clear, however, whether such effects may reach adult offspring sexual traits, with potential consequences for sexual selection and speciation. Here, we report effects of adult female aggregation density on the mating signals and mate preferences of their offspring in an insect that communicates via plant-borne vibrational signals. We experimentally manipulated the density of aggregations experienced by egg-laying mothers, reared the offspring in standard densities, and tested for corresponding differences in their signals and preferences. We detected a strong effect in male signals, with sons of mothers that experienced low aggregation density signalling more. We also detected a weak effect on female mate preferences, with daughters of mothers that experienced low aggregation density being less selective. These adjustments may help males and females find mates and secure matings in low densities, if the conditions they encounter correspond to those their mothers experienced. Our results thus extend theory regarding adjustments to the social environment to the scale of intergenerational effects, with maternal social environments influencing the expression of the sexual traits of adult offspring. 
    more » « less