skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts
Abstract Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.  more » « less
Award ID(s):
1932661
PAR ID:
10497624
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Plant Cell
Volume:
36
Issue:
4
ISSN:
1040-4651
Format(s):
Medium: X Size: p. 1119-1139
Size(s):
p. 1119-1139
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions. 
    more » « less
  2. Wallqvist, Anders (Ed.)
    Bacterial pathogens adapt their metabolism to the plant environment to successfully colonize their hosts. In our efforts to uncover the metabolic pathways that contribute to the colonization ofArabidopsis thalianaleaves byPseudomonas syringaepvtomatoDC3000 (PstDC3000), we created iPst19, an ensemble of 100 genome-scale network reconstructions ofPstDC3000 metabolism. We developed a novel approach for gene essentiality screens, leveraging the predictive power of iPst19 to identify core and ancillary condition-specific essential genes. Constraining the metabolic flux of iPst19 withPstDC3000 gene expression data obtained from naïve-infected or pre-immunized-infected plants, revealed changes in bacterial metabolism imposed by plant immunity. Machine learning analysis revealed that among other amino acids, branched-chain amino acids (BCAAs) metabolism significantly contributed to the overall metabolic status of each gene-expression-contextualized iPst19 simulation. These predictions were tested and confirmed experimentally.PstDC3000 growth and gene expression analysis showed that BCAAs suppress virulence gene expressionin vitrowithout affecting bacterial growth.In planta, however, an excess of BCAAs suppress the expression of virulence genes at the early stages of infection and significantly impair the colonization of Arabidopsis leaves. Our findings suggesting that BCAAs catabolism is necessary to express virulence and colonize the host. Overall, this study provides valuable insights into how plant immunity impactsPstDC3000 metabolism, and how bacterial metabolism impacts the expression of virulence. 
    more » « less
  3. The root microbiome structure ensures optimal plant host health and fitness, and it is, at least in part, defined by the plant genotype. It is well documented that root-secreted amino acids promote microbial chemotaxis and growth in the rhizosphere. However, whether the plant-mediated re-uptake of amino acids contributes to maintaining optimal levels of amino acids in the root exudates, and, in turn, microbial growth and metabolism, remains to be established. Here, we show that Lysine-Histidine Transporter-1 (LHT1), an amino acid inward transporter expressed in Arabidopsis thaliana roots, limits the growth of the plant-growth-promoting bacteria Pseudomonas simiae WCS417r (Ps WCS417r). The amino acid profiling of the lht1 mutant root exudates showed increased levels of glutamine, among other amino acids. Interestingly, lht1 exudates or Gln-supplemented wild-type exudates enhance Ps WCS417r growth. However, despite promoting bacterial growth and robust root colonization, lht1 exudates and Gln-supplemented wild-type exudates inhibited plant growth in a Ps WCS417r-dependent manner. The transcriptional analysis of defense and growth marker genes revealed that plant growth inhibition was not linked to the elicitation of plant defense but likely to the impact of Ps WCS417r amino acids metabolism on auxin signaling. These data suggest that an excess of amino acids in the rhizosphere impacts Ps WCS417r metabolism, which, in turn, inhibits plant growth. Together, these results show that LHT1 regulates the amino-acid-mediated interaction between plants and Ps WCS417r and suggest a complex relationship between root-exuded amino acids, root colonization by beneficial bacteria, bacterial metabolism, and plant growth promotion. 
    more » « less
  4. null (Ed.)
    Plant growth, development, and nutritional quality depends upon amino acid homeostasis, especially in seeds. However, our understanding of the underlying genetics influencing amino acid content and composition remains limited, with only a few candidate genes and quantitative trait loci identified to date. Improved knowledge of the genetics and biological processes that determine amino acid levels will enable researchers to use this information for plant breeding and biological discovery. Toward this goal, we used genomic prediction to identify biological processes that are associated with, and therefore potentially influence, free amino acid (FAA) composition in seeds of the model plant Arabidopsis thaliana . Markers were split into categories based on metabolic pathway annotations and fit using a genomic partitioning model to evaluate the influence of each pathway on heritability explained, model fit, and predictive ability. Selected pathways included processes known to influence FAA composition, albeit to an unknown degree, and spanned four categories: amino acid, core, specialized, and protein metabolism. Using this approach, we identified associations for pathways containing known variants for FAA traits, in addition to finding new trait-pathway associations. Markers related to amino acid metabolism, which are directly involved in FAA regulation, improved predictive ability for branched chain amino acids and histidine. The use of genomic partitioning also revealed patterns across biochemical families, in which serine-derived FAAs were associated with protein related annotations and aromatic FAAs were associated with specialized metabolic pathways. Taken together, these findings provide evidence that genomic partitioning is a viable strategy to uncover the relative contributions of biological processes to FAA traits in seeds, offering a promising framework to guide hypothesis testing and narrow the search space for candidate genes. 
    more » « less
  5. Abstract Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogenPseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI againstP. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporterLysineHistidineTransporter1(LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens. 
    more » « less