skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining and Observing Families' Epistemic Agency During Science Center Visits
Supporting learners’ agency in constructing and using STEM knowledge is critical not only for fostering deeper learning, but also for making STEM education more equitable and inclusive. Informal learning environments like museums and science centers often prioritize agency within hands-on and interactive learning experiences, but few studies have defined what agency looks like within these spaces. The current study uses theoretical understandings of epistemic agency as a lens for understanding families’ experiences in science centers. A team of researchers, exhibit designers, educators, and museum facilitators collaboratively generated a working definition of agency in the context of families’ science center visits, and created a reflection tool to help museum practitioners notice observable aspects of agency in families’ interactions at STEM exhibits.  more » « less
Award ID(s):
2046141
PAR ID:
10497635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AERA
Date Published:
Subject(s) / Keyword(s):
agency science centers museums family learning informal STEM learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Agency is a central value within museums and science centers, but it has not been defined and operationalized in ways that can guide museum practice or support inclusion for new audiences. In this project, an interdepartmental group of science center staff co‐created a conceptual framework for noticing and supporting visitors' agency. The framework includes four interconnected aspects of agency: physical environment, social engagement, choice and autonomy, and relevance and empowerment. Conceptualizing agency as multifaceted led to more expansive approaches for supporting it, allowing staff to move beyond open‐endedness to consider a wider range of supports and structures that can make museum experiences more inviting and inclusive. The framework informed the development of practical tools for use by exhibit/program developers and facilitators. Tools are freely available and guide museum staff in questioning current practices and integrating the four facets of agency into planning, prototyping, and observation of interactive experiences. 
    more » « less
  2. Museums and science centers are capable of challenging traditional and hierarchical pedagogies (Kratz & Merritt, 2011) by integrating STEM content learning with the knowledge and cultural wealth available within local communities. The current study took place within the context of a long-term partnership between a science center and a local public preschool in a culturally and linguistically diverse, urban community in the northeastern US. This study brought together preschool educators, caregivers, and museum staff to co-design new STEAM enrichment possibilities for young children and their families. 
    more » « less
  3. As artificial intelligence (AI) profoundly reshapes our personal and professional lives, there are growing calls to support pre-college aged youth as they develop capacity to engage critically and productively with AI. While efforts to introduce AI concepts to pre-college aged youth have largely focused on older teens, there is growing recognition of the importance of developing AI literacy among younger children. Today’s youth already encounter and use AI regularly, but they might not yet be aware of its role, limitations, risks, or purpose in a particular encounter, and may not be positioned to question whether it should be doing what it’s doing. In response to this critical moment to develop AI learning experiences that can support children at this age, researchers and learning designers at the University of California’s Lawrence Hall of Science, in collaboration with AI developers at the University of Southern California’s Institute for Creative Technologies, have been iteratively developing and studying a series of interactive learning experiences for public science centers and similar out-of-school settings. The project is funded through a grant by the National Science Foundation and the resulting exhibit, The Virtually Human Experience (VHX), represents one of the first interactive museum exhibits in the United States designed explicitly to support young children and their families in developing understanding of AI. The coordinated experiences in VHX include both digital (computer-based) and non-digital (“unplugged”) activities designed to engage children (ages 7-12) and their families in learning about AI. In this paper, we describe emerging insights from a series of case studies that track small groups of museum visitors (e.g. a parent and two children) as they interact with the exhibit. The case studies reveal opportunities and challenges associated with designing AI learning experiences for young children in a free-choice environment like a public science center. In particular, we focus on three themes emerging from our analyses of case data: 1) relationships between design elements and collaborative discourse within intergenerational groups (i.e., families and other adult-child pairings); 2) relationships between design elements and impromptu visitor experimentation within the exhibit space; and 3) challenges in designing activities with a low threshold for initial engagement such that even the youngest visitors can engage meaningfully with the activity. Findings from this study are directly relevant to support researchers and learning designers engaged in rapidly expanding efforts to develop AI learning opportunities for youth, and are likely to be of interest to a broad range of researchers, designers, and practitioners as society encounters this transformative technology and its applications become increasingly integral to how we live and work. 
    more » « less
  4. IntroductionEarly informal learning experiences are essential for sparking long-term interest in science, technology, engineering, and math (STEM). In a prior study, we found more promising parent involvement outcomes when families of young children were provided with STEM family education events along with home STEM activity kits compared to providing workshops alone. This study was a conceptual replication using the same program—Teaching Together STEM—to deliver educational workshops plus home activity kits; however, we varied the delivery method by using virtual “funshops” to evaluate if parents perceived this modality as feasible and useful. MethodsMuseum informal science educators introduced four units via virtual video chat sessions linked to 12 hands-on STEM activities that were mailed to families randomly assigned to the treatment group. Half of the families were assigned to a waitlist control group that received a portion of the virtual program after the posttest. Participants included 60 families with children aged 3 to 5 years from diverse linguistic and socioeconomic backgrounds. ResultsOur results indicate no significant group differences in the primary outcome of parents’ involvement in informal STEM but a small, positive effect size (ES = 0.18) that was similar in magnitude to the prior, in-person study. Although parents mostly perceived the remote delivery as convenient and the materials as engaging for their child, there were no significant program impacts on children’s general science interests (ES = −0.19). DiscussionDespite the convenience, parents reported time was a barrier to doing STEM activities at home. Parents with lower education levels were less likely to attend, suggesting virtual approaches are not sufficient for ensuring broad access to family engagement programs for populations underrepresented in STEM. 
    more » « less
  5. Abstract Teacher leaders influence their peers by introducing innovative instructional methods and enhancing teaching quality. They have proven invaluable to school principals as they prioritize comprehensive teacher development, bolster teacher effectiveness, and promote teacher retention. Despite their importance, little to no research—prior to the present study—has shed light on the development of teacher leaders and the evolution of their leadership identity. While science, technology, engineering, and mathematics (STEM) teacher leaders offer a potential remedy for attrition in public schools, a substantial gap exists in understanding how a STEM teacher's self‐efficacy, values, and agency contribute to their transformation into effective STEM teacher leaders, especially in urban‐like learning environments. The present study focuses on STEM teacher leadership identity development and the challenges encountered. It ascertains the interplay between urban‐like learning environments, self‐efficacy, agency, the teacher leader's role within the school, and values in forecasting STEM teacher leadership identity. This research involved 100 in‐service PreK‐12 public school STEM teacher leaders. It yielded significant, positive, and meaningful relations between urban‐like learning environments, self‐efficacy/agency, teacher leader role, values, and STEM teacher leadership identity. These findings can enhance various facets of PreK‐12 STEM education, including educational programming, teacher training, and cultivating STEM teacher leadership. 
    more » « less