skip to main content


Title: Room temperature 3D carbon microprinting
Abstract

Manufacturing custom three-dimensional (3D) carbon functional materials is of utmost importance for applications ranging from electronics and energy devices to medicine, and beyond. In lieu of viable eco-friendly synthesis pathways, conventional methods of carbon growth involve energy-intensive processes with inherent limitations of substrate compatibility. The yearning to produce complex structures, with ultra-high aspect ratios, further impedes the quest for eco-friendly and scalable paths toward 3D carbon-based materials patterning. Here, we demonstrate a facile process for carbon 3D printing at room temperature, using low-power visible light and a metal-free catalyst. Within seconds to minutes, this one-step photocatalytic growth yields rod-shaped microstructures with aspect ratios up to ~500 and diameters below 10 μm. The approach enables the rapid patterning of centimeter-size arrays of rods with tunable height and pitch, and of custom complex 3D structures. The patterned structures exhibit appealing luminescence properties and ohmic behavior, with great potential for optoelectronics and sensing applications, including those interfacing with biological systems.

 
more » « less
NSF-PAR ID:
10497680
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buildings consume over half of annual energy supply as embodied and operating energy in their construction and operation releasing harmful emissions to the atmosphere. Over 90 % of the embodied energy is attributed to construction materials used in building structure, envelope, and interiors that must be reduced to minimize material use. Concrete is one of the major materials that contributes significantly to the energy and carbon footprint of buildings, as it is responsible for 5-9 % of global carbon emission. Because most of the concrete use in the building sector occurs in building structures, assessing how building design parameters influence its environmental sustainability is important. One of the design parameters that impact the sustainability of buildings is the aspect ratio, which is defined as the ratio of horizontal to vertical surface area of a building. A building with the same floor area can be designed horizontally or vertically with different aspect ratios, which will influence its structural design and eventually the amount of concrete used in the building. In this paper, we examine how aspect ratio may affect the environmental sustainability of a buildings foundation, structural framing, and slab. We model the structure of a generic building with different aspect ratio to analyze if aspect ratio can help reduce the energy and carbon embodied in reinforced concrete structures. 
    more » « less
  2. Abstract

    The generation of electronic waste (e‐waste) poses a significant environmental challenge, necessitating strategies to extend electronics’ lifespan and incorporate eco‐friendly materials to enable their rapid degradation after disposal. Foldable electronics utilizing eco‐friendly materials offer enhanced durability during operation and degradability at the end of their life cycle. However, ensuring robust physical adhesion between electrodes/circuits and substrates during the folding process remains a challenge, leading to interface delamination and electronic failure. In this study, electrohydrodynamic (EHD) printing is employed as a cost‐effective method to fabricate the eco‐friendly foldable electronics by printing PEDOT:PSS/graphene composite circuits onto polyvinyl alcohol (PVA) films. The morphology and electrical properties of the printed patterns using inks with varying graphene and PEDOT:PSS weight ratios under different printing conditions are investigated. The foldability of the printed electronics is demonstrated, showing minimal resistance variation and stable electronic response even after four folds (16 layers) and hundreds of folding and unfolding cycles. Additionally, the application of printed PEDOT:PSS/graphene circuit is presented as a resistive temperature sensor for monitoring body temperature and respiration behavior. Furthermore, the transient features and degradation of the PEDOT:PSS/graphene/PVA based foldable electronics are explored, highlighting the potential promise as transient electronics in reducing electronic waste.

     
    more » « less
  3. Abstract

    The ability to promote three‐dimensional (3D) self‐organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high‐throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long‐term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.

     
    more » « less
  4. Abstract

    Two-dimensional (2D) growth-induced 3D shaping enables shape-morphing materials for diverse applications. However, quantitative design of 2D growth for arbitrary 3D shapes remains challenging. Here we show a 2D material programming approach for 3D shaping, which prints hydrogel sheets encoded with spatially controlled in-plane growth (contraction) and transforms them to programmed 3D structures. We design 2D growth for target 3D shapes via conformal flattening. We introduce the concept of cone singularities to increase the accessible space of 3D shapes. For active shape selection, we encode shape-guiding modules in growth that direct shape morphing toward target shapes among isometric configurations. Our flexible 2D printing process enables the formation of multimaterial 3D structures. We demonstrate the ability to create 3D structures with a variety of morphologies, including automobiles, batoid fish, and real human face.

     
    more » « less
  5. Abstract

    Ongoing efforts in triboelectric nanogenerators (TENGs) focus on enhancing power generation, but obstacles concerning the economical and cost‐effective production of TENGs continue to prevail. Micro‐/nanostructure engineering of polymer surfaces has been dominantly utilized for boosting the contact triboelectrification, with deposited metal electrodes for collecting the scavenged energy. Nevertheless, this state‐of‐the‐art approach is limited by the vague potential for producing 3D hierarchical surface structures with conformable coverage of high‐quality metal. Laser‐shock imprinting (LSI) is emerging as a potentially scalable approach for directly surface patterning of a wide range of metals with 3D nanoscale structures by design, benefiting from the ultrahigh‐strain‐rate forming process. Here, a TENG device is demonstrated with LSI‐processed biomimetic hierarchically structured metal electrodes for efficient harvesting of water‐drop energy in the environment. Mimicking and transferring hierarchical microstructures from natural templates, such as leaves, into these water‐TENG devices is effective regarding repelling water drops from the device surface, since surface hydrophobicity from these biomicrostructures maximizes the TENG output. Among various leaves' microstructures, hierarchical microstructures from dried bamboo leaves are preferable regarding maximizing power output, which is attributed to their unique structures, containing both dense nanostructures and microscale features, compared with other types of leaves. Also, the triboelectric output is significantly improved by closely mimicking the hydrophobic nature of the leaves in the LSI‐processed metal surface after functionalizing it with low‐surface‐energy self‐assembled‐monolayers. The approach opens doors to new manufacturable TENG technologies for economically feasible and ecologically friendly production of functional devices with directly patterned 3D biomimic metallic surfaces in energy, electronics, and sensor applications.

     
    more » « less