skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PRODIGY: Enabling In-context Learning Over Graphs
In-context learning is the ability of a pretrained model to adapt to novel and diverse downstream tasks by conditioning on prompt examples, without optimizing any parameters. While large language models have demonstrated this ability, how in-context learning could be performed over graphs is unexplored. In this paper, we develop Pretraining Over Diverse In-Context Graph Systems (PRODIGY), the first pretraining framework that enables in-context learning over graphs. The key idea of our framework is to formulate in-context learning over graphs with a novel prompt graph representation, which connects prompt examples and queries. We then propose a graph neural network architecture over the prompt graph and a corresponding family of in-context pretraining objectives. With PRODIGY, the pre- trained model can directly perform novel downstream classification tasks on unseen graphs via in-context learning. We provide empirical evidence of the effectiveness of our framework by showcasing its strong in-context learning performance on tasks involving citation networks and knowledge graphs. Our approach outperforms the in-context learning accuracy of contrastive pretraining baselines with hard-coded adaptation by 18% on average across all setups. Moreover, it also outperforms standard finetuning with limited data by 33% on average with in-context learning.  more » « less
Award ID(s):
1918940 1835598
PAR ID:
10497850
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Advances in neural information processing systems
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In-Context Learning (ICL) ability has been found efficient across a wide range of applications, where the Large Language Models (LLM) learn to complete the tasks from the examples in the prompt without tuning the parameters. In this work, we conduct a comprehensive study to understand ICL from a statistical perspective. First, we show that the perfectly pretrained LLMs perform Bayesian Model Averaging (BMA) for ICL under a dynamic model of examples in the prompt. The average error analysis for ICL is then built for the perfectly pretrained LLMs with the analysis of BMA. Second, we demonstrate how the attention structure boosts the BMA implementation. With sufficient examples in the prompt, attention is proven to perform BMA under the Gaussian linear ICL model, which also motivates the explicit construction of the hidden concepts from the attention heads' values. Finally, we analyze the pretraining behavior of LLMs. The pretraining error is decomposed as the generalization error and the approximation error. The generalization error is upper bounded via the PAC-Bayes framework. Then the ICL average error of the pretrained LLMs is shown to be the sum of O(T^{-1}) and the pretraining error. In addition, we analyze the ICL performance of the pretrained LLMs with misspecified examples. 
    more » « less
  2. In-context learning (ICL), the ability of large language models to perform novel tasks by conditioning on a prompt with a few task examples, requires these examples to be informative about the test instance. The standard approach of independently ranking and selecting the most similar examples selects redundant examples while omitting important information. In this work, we show that BERTScore-Recall (BSR) selects better examples that demonstrate more of the salient aspects, e.g. reasoning patterns, of the test input. We further extend BSR and many standard metrics to easily optimizable set-level metrics, giving still better coverage of those salient aspects. On 15 datasets spanning 6 tasks and with 7 diverse LLMs, we show that (1) BSR is the superior metric for in-context example selection across the board, and (2) for compositional tasks, set selection using Set-BSR outperforms independent ranking by up to 17 points on average and, despite being training-free, surpasses methods that leverage task or LLM-specific training. 
    more » « less
  3. Molecular representation learning is vital for various downstream applications, including the analysis and prediction of molecular properties and side effects. While Graph Neural Networks (GNNs) have been a popular framework for modeling molecular data, they often struggle to capture the full complexity of molecular representations. In this paper, we introduce a novel method called Gode, which accounts for the dual-level structure inherent in molecules. Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph. Gode integrates individual molecular graph representations with multi-domain biochemical data from knowledge graphs. By pre-training two GNNs on different graph structures and employing contrastive learning, Gode effectively fuses molecular structures with their corresponding knowledge graph substructures. This fusion yields a more robust and informative representation, enhancing molecular property predictions by leveraging both chemical and biological information. When fine-tuned across 11 chemical property tasks, our model significantly outperforms existing benchmarks, achieving an average ROC-AUC improvement of 12.7% for classification tasks and an average RMSE/MAE improvement of 34.4% for regression tasks. Notably, Gode surpasses the current leading model in property prediction, with advancements of 2.2% in classification and 7.2% in regression tasks. 
    more » « less
  4. Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating input graphs or reframing downstream tasks as pre-training tasks without fine-tuning the pre-trained GNN models. While recent graph prompt tuning methods have proven effective in adapting pre-trained GNN models for downstream tasks, they overlook the crucial role of edges in graph prompt design, which can significantly affect the quality of graph representations for downstream tasks. In this study, we propose EdgePrompt, a simple yet effective graph prompt tuning method from the perspective of edges. Unlike previous studies that design prompt vectors on node features, EdgePrompt manipulates input graphs by learning additional prompt vectors for edges and incorporates the edge prompts through message passing in the pre-trained GNN models to better embed graph structural information for downstream tasks. Our method is compatible with prevalent GNN architectures pre-trained under various pre-training strategies and is universal for different downstream tasks. We provide comprehensive theoretical analyses of our method regarding its capability of handling node classification and graph classification as downstream tasks. Extensive experiments on ten graph datasets under four pre-training strategies demonstrate the superiority of our proposed method against six baselines. 
    more » « less
  5. Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models are available at https://github.com/michiyasunaga/dragon. 
    more » « less