Abstract Many of the studies on the entropy‐stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O have been heavily application‐based. Previous works have studied effects of cation stoichiometry on the entropy‐driven reaction to form a single phase, but a fundamental exploration of the effects of anion stoichiometry and/or redox chemistry on electrical properties is lacking. Using near‐edge X‐ray absorption fine structure (NEXAFS) and electrical measurements, we show that oxidizing thin film samples of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O affects primarily the valence of Co, leaving the other cations in this high‐entropy system unchanged. This oxidation increases electrical conduction in these thin films, which occurs via small polaron hopping mediated by the Co valence shift from 2+ to a mixed 2+/3+ state. In parallel, we show that bulk samples sintered in an oxygen‐rich atmosphere have a lower activation energy for electrical conduction than those equilibrated in a nitrogen (reducing) atmosphere. Combining feasible defect compensation scenarios with electrical impedance measurements and NEXAFS data, we propose a self‐consistent interpretation of Co redox‐mediated small polaron conduction as the dominant method of charge transfer in this system.
more »
« less
Tailored (La0.2Pr0.2Nd0.2Tb0.2D0.2)2Ce2O7 as a Highly Active and Stable Nanocatalyst for the Oxygen Evolution Reaction
Abstract Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self‐assembly (EISA) can be used to synthesize highly porous and high surface area cerate‐based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 +cation substitution for Ce in the CeO2fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 +xphase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally‐complex fluorite– (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm−2in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.
more »
« less
- Award ID(s):
- 2145174
- PAR ID:
- 10497895
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An extended series of rare‐earth metal calcium germanides have been synthesized and structurally characterized. The compounds have the general formulaRE5−xCaxGe4(1.5<x<3.6;RE=rare‐earth metal; Ce, Nd, Sm, Tb−Lu) and their structures have been established from single‐crystal X‐ray diffraction methods. They crystallize with the Gd5Si4‐type in the orthorhombic space groupPnma(No. 62;Z=4; Pearson symboloP36), where the germanium atoms are interconnected into two kinds of Ge2‐dimers, formally [Ge2]6−. These studies show that Ca can be successfully incorporated into the hostRE5Ge4structure, whereby trivalent rare‐earth metal atoms can be substituted by divalent calcium atoms. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms and cubes, centered by either Ge or Ca atoms. On one of the metal sites, the substitution is preferential and in 9 out of the 10 refined structures, the Wyckoff site 4cis found almost exclusively occupied by Ca. On the other two metal sites the substitution patterns appear to be governed by the mismatch between the size of theRE3+and Ca2+ions. This work further demonstrates the ability for the Gd5Si4structure type to accommodate the substitution of a non‐magnetic element while maintaining the global structural integrity.more » « less
-
Abstract Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.more » « less
-
Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations.more » « less
-
The ion implantation of H+and D+into Ga2O3produces several O–H and O–D centers that have been investigated by vibrational spectroscopy. These defects include the dominant VGa(1)-2H and VGa(1)-2D centers studied previously along with additional defects that can be converted into this structure by thermal annealing. The polarization dependence of the spectra has also been analyzed to determine the directions of the transition moments of the defects and to provide information about defect structure. Our experimental results show that the implantation of H+(or D+) into Ga2O3produces two classes of defects with different polarization properties. Theory finds that these O–H (or O–D) centers are based on two shifted configurations of a Ga(1) vacancy that trap H (or D) atom(s). The interaction of VGa(1)-nD centers with other defects in the implanted samples has also been investigated to help explain the number of O–D lines seen and their reactions upon annealing. Hydrogenated divacancy VGa(1)-VOcenters have been considered as an example.more » « less