- Award ID(s):
- 2046626
- PAR ID:
- 10497998
- Publisher / Repository:
- FERMILAB-PUB-23-451-CSAID-PPD Arxiv eprint = "2306.13567",
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.more » « less
-
Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.
-
A bstract Muon colliders are an exciting possibility for reaching the highest energies possible on the shortest timescale. They potentially combine the greatest strengths of e + e − and pp colliders by bridging the energy versus precision dichotomy. In this paper we study the sensitivity of Higgs properties that can be achieved with a future 3 or 10 TeV muon collider from single Higgs production. The results presented here represent the first comprehensive picture for the precision achievable including backgrounds and using fast detector simulation with Delphes. Additionally, we compare the results of fast detector simulation with available full simulation studies that include the muon collider specific Beam Induced Background, and show the results are largely unchanged. We comment on some of the strengths and weaknesses of a high energy muon collider for Higgs physics alone, and demonstrate the complementarity of such a collider with the LHC and e + e − Higgs factories. Furthermore, we discuss some of the exciting avenues for improving future results from both theoretical and detector R&D that could be undertaken.more » « less
-
The first search for double charged charmonium-like state production in decays and in e^{+} e^{-} annihilation at \sqrt{s}= 10.52, 10.58, and 10.867 GeV is conducted using data collected with the Belle detector at the KEKB asymmetric energy electron-positron collider. No significant signals are observed in any of the studied modes.more » « less
-
Abstract Artificial Intelligence is poised to transform the design of complex, large-scale detectors like ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical and geometric limits.This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E), employing state-of-the-art multiobjective optimization to tackle complex designs. Supported by the ePIC software stack and using
Geant4 simulations, our approach benefits from transparent parameterization and advanced AI features.The workflow leverages the PanDA and iDDS systems, used in major experiments such as ATLAS at CERN LHC, the Rubin Observatory, and sPHENIX at RHIC, to manage the compute intensive demands of ePIC detector simulations. Tailored enhancements to the PanDA system focus on usability, scalability, automation, and monitoring.Ultimately, this project aims to establish a robust design capability, apply a distributed AI-assisted workflow to the ePIC detector, and extend its applications to the design of the second detector (Detector-2) in the EIC, as well as to calibration and alignment tasks. Additionally, we are developing advanced data science tools to efficiently navigate the complex, multidimensional trade-offs identified through this optimization process.