skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison between popular Genetic Algorithm (GA)-based tool and Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) for optimizing indoor daylight
To maximize indoor daylight, design projects commonly use commercial optimization tools to find optimum window configurations. However, experiments show that such tools either fail to find the optimal solution or are very slow to compute in certain conditions.This paper presents a comparative analysis between a gradient-free optimization technique, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and the widely used Genetic Algorithm (GA)-based tool, Galapagos, to optimize window parameters to improve indoor daylight in six locations across different latitudes. A novel combination of daylight metrics, sDA, and ASE, is proposed for single-objective optimization comparison. Results indicate that GA in Galapagos takes progressively more time to converge, from 11 minutes in southernmost to 11 hours in northernmost latitudes, while runtime for CMA-ES is consistently around 2 hours. On average, CMA-ES is 1.5 times faster than Galapagos, while consistently producing optimal solutions. This paper can help researchers in selecting appropriate optimization algorithms for daylight simulation based on latitudes, runtime, and solution quality.  more » « less
Award ID(s):
2238979
PAR ID:
10498040
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of Building Simulation 2023: 18th Conference of IBPSA
Date Published:
Journal Name:
Proceedings of Building Simulation 2023: 18th Conference of IBPSA
ISSN:
2522-2708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scott, Jacob G. (Ed.)
    The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans—that is, optimized sequences of potentially different drug combinations—providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available. 
    more » « less
  2. Single-objective optimization algorithms search for the single highest quality solution with respect to an objective. Quality diversity (QD) optimization algorithms, such as Covariance Matrix Adaptation MAP-Elites (CMA-ME), search for a collection of solutions that are both high quality with respect to an objective and diverse with respect to specified measure functions. However, CMA-ME suffers from three major limitations highlighted by the QD community: prematurely abandoning the objective in favor of exploration, struggling to explore flat objectives, and having poor performance for low-resolution archives. We propose a new QD algorithm, CMA MAP-Annealing (CMA-MAE), and its differentiable QD variant, CMA-MAE via a Gradient Arborescence (CMA-MAEGA), that address all three limitations. We provide theoretical justifications for the new algorithm with respect to each limitation. Our theory informs our experiments, which support the theory and show that CMA-MAE achieves state-of-the-art performance and robustness on standard QD benchmark and reinforcement learning domains. 
    more » « less
  3. N/A (Ed.)
    Abstract—The Resource Constrained Shortest Path Problem (RCSPP) seeks to determine a minimum-cost path between a start and a goal location while ensuring that one or multiple types of resource consumed along the path do not exceed their limits. This problem is often solved on a graph where a path is incrementally built from the start towards the goal during the search. RCSPP is computationally challenging as comparing these partial solution paths is based on multiple criteria (i.e., the accumulated cost and resource along the path), and in general, there does not exist a single path that optimizes all criteria simultaneously. Consequently, the search needs to maintain and explore a large number of partial paths in order to find an optimal solution. While a variety of algorithms have been developed to solve RCSPP, they either have little consideration about efficiently comparing and maintaining the partial paths, which reduces their overall runtime efficiency, or are restricted to handle only one resource constraint as opposed to multiple resource constraints. This paper develops Enhanced Resource Constrained A* (ERCA*), a fast A*-based algorithm that can find an optimal solution while satisfying multiple resource constraints. ERCA* leverages both the recent advances in multi-objective path planning to efficiently compare and maintain partial paths, and techniques from the existing RCSPP literature. Furthermore, ERCA* has a functional parameter to broker a trade-off between solution quality and runtime efficiency. The results show ERCA* often runs several orders of magnitude faster than an existing leading algorithm for RCSPP. 
    more » « less
  4. While crystal structure prediction (CSP) remains a longstanding challenge, we introduce ParetoCSP, a novel algorithm for CSP, which combines a multi-objective genetic algorithm (GA) with a neural network inter-atomic potential model to find energetically optimal crystal structures given chemical compositions. We enhance the updated multi-objective GA (NSGA-III) by incorporating the genotypic age as an independent optimization criterion and employ the M3GNet universal inter-atomic potential to guide the GA search. Compared to GN-OA, a state-of-the-art neural potential-based CSP algorithm, ParetoCSP demonstrated significantly better predictive capabilities, outperforming by a factor of $$ 2.562 $$ across $$ 55 $$ diverse benchmark structures, as evaluated by seven performance metrics. Trajectory analysis of the traversed structures of all algorithms shows that ParetoCSP generated more valid structures than other algorithms, which helped guide the GA to search more effectively for the optimal structures. Our implementation code is available at https://github.com/sadmanomee/ParetoCSP . 
    more » « less
  5. null (Ed.)
    Recent research applies soft computing techniques to fit software reliability growth models. However, runtime performance and the distribution of the distance from an optimal solution over multiple runs must be explicitly considered to justify the practical utility of these approaches, promote comparison, and support reproducible research. This paper presents a meta-optimization framework to design stable and efficient multi-phase algorithms for fitting software reliability growth models. The approach combines initial parameter estimation techniques from statistical algorithms, the global search properties of soft computing, and the rapid convergence of numerical methods. Designs that exhibit the best balance between runtime performance and accuracy are identified. The approach is illustrated through nonhomogeneous Poisson process and covariate software reliability growth models, including a cross-validation step on data sets not used to identify designs. The results indicate the nonhomogeneous Poisson process model considered is too simple to benefit from soft computing because it incurs additional runtime with no increase in accuracy attained. However, a multi-phase design for the covariate software reliability growth model consisting of the bat algorithm followed by a numerical method achieves better performance and converges consistently, compared to a numerical method only. The proposed approach supports higher dimensional covariate software reliability growth model fitting suitable for implementation in a tool. 
    more » « less