As more people move back into densely populated cities, bike sharing is emerging as an important mode of urban mobility. In a typical bike-sharing system (BSS), riders arrive at a station and take a bike if it is available. After retrieving a bike, they ride it for a while, then return it to a station near their final destinations. Since space is limited in cities, each station has a finite capacity of docks, which cannot hold more bikes than its capacity. In this paper, we study BSSs with stations having a finite capacity. By an appropriate scaling of our stochastic model, we prove a mean-field limit and a central limit theorem for an empirical process of the number of stations with k bikes. The mean-field limit and the central limit theorem provide insight on the mean, variance, and sample path dynamics of large-scale BSSs. We also leverage our results to estimate confidence intervals for various performance measures such as the proportion of empty stations, the proportion of full stations, and the number of bikes in circulation. These performance measures have the potential to inform the operations and design of future BSSs. 
                        more » 
                        « less   
                    
                            
                            Tropical field stations yield high conservation return on investment
                        
                    
    
            Abstract Conservation funding is currently limited; cost‐effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stations’ conservation return on investment and explored the impact of COVID‐19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km2than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These “earth observatories” provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10498072
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Conservation Letters
- ISSN:
- 1755-263X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Selfish bacteria change the odds in their favor by binding, partially hydrolyzing, and transporting polysaccharides into the periplasmic space without loss of hydrolysis products. We expected selfish bacteria to be most common in the upper ocean, where phytoplankton produce abundant fresh organic matter, including complex polysaccharides. We, therefore, sampled water in the western North Atlantic Ocean at four depths from three stations differing in physiochemical conditions; these stations and depths also differed considerably in microbial community composition. To our surprise, we found that selfish bacteria are common throughout the water column of the ocean, including at depths greater than 5500 m. Selfish uptake as a strategy thus appears to be geographically—and phylogenetically—widespread. Since processing and uptake of polysaccharides require enzymes that are highly sensitive to substrate structure, the activities of these bacteria might not be reflected by measurements relying on uptake only of low molecular weight substrates. Moreover, even at the bottom of the ocean, the supply of structurally-intact polysaccharides, and therefore the return on enzymatic investment, must be sufficient to maintain these organisms.more » « less
- 
            Synopsis Equity and inclusivity in STEM research has become a larger topic of discussion in recent years; however, researchers and scientists with disabilities and/or chronic illnesses are often missing from these conversations. Further, while field research is a major research component for some STEM disciplines, it is unclear what accessibility barriers or accommodations exist across the field sciences. Field research can sometimes involve harsh environments, topography, and weather that present challenges to those with disabilities and/or chronic illnesses. A large and coinciding obstacle standing in the way of field research accessibility is the ableism present across science and academia, resulting in and from a lack of prioritization of attention and funding from universities and institutions. Biological field stations have been shown to be valuable not only as infrastructure for field-based research, but also as providing resources toward the scientific education of students and scientific outreach initiatives for the general public. As such, biological field stations are perfectly positioned to reduce barriers in research inclusion and accessibility for students and scientists with disabilities and/or chronic illnesses. The current work presents the results of a survey meant to inventory the presence or absence of accessible infrastructure across field stations, with responses spanning six countries and 24 US states. Our results highlight a number of accessibility deficits in areas such as accessible entrances, kitchens, and bathrooms. Our results suggest that (1) biological field stations have significant variability in accessibility with significant deficits, especially in non-public-facing buildings used primarily by staff and researchers, and (2) field stations would benefit from an increase in federal funding opportunities to expedite their progress toward compliance with Americans with Disabilities Act (ADA) standards. We propose potential solutions to field work infrastructure spanning a range of financial costs, with emphasis on the point that efforts toward accessibility do not require an “all-or-nothing” approach, and that any step toward accessibility will make field stations more inclusive. Additionally, we further suggest that federal funding sources, such as the NSF and NIH, as well as university leadership, should consider broadening diversity initiatives to promote the continuation of, and increased accessibility of, university-affiliated field stations.more » « less
- 
            Given declines in biodiversity and ecosystem services, funding to support conservation must be invested effectively. However, funds for conservation often come with geographic restrictions on where they can be spent. We introduce a method to demonstrate to supporters of conservation how much more could be achieved if they were to allow greater flexibility over conservation funding. Specifically, we calculated conservation exchange rates that summarized gains in conservation outcomes available if funding originating in one location could be invested elsewhere. We illustrate our approach by considering nongovernmental organization funding and major federal programs within the US and a range of conservation objectives focused on biodiversity and ecosystem services. We show that large improvements in biodiversity and ecosystem service provision are available if geographic constraints on conservation funding were loosened. Finally, we demonstrate how conservation exchange rates can be used to spotlight promising opportunities for relaxing geographic funding restrictions.more » « less
- 
            Abstract The interior of Dronning Maud Land (DML) in East Antarctica is one of the most data-sparse regions of Antarctica for studying climate change. A monthly mean near-surface temperature dataset for the last 30 years has been compiled from the historical records from automatic weather stations (AWSs) at three sites in the region (Mizuho, Relay Station, and Dome Fuji). Multiple AWSs have been installed along the route to Dome Fuji since the 1990s, and observations have continued to the present day. The use of passive-ventilated radiation shields for the temperature sensors at the AWSs may have caused a warm bias in the temperature measurements, however, due to insufficient ventilation in the summer, when solar radiation is high and winds are low. In this study, these warm biases are quantified by comparison with temperature measurements with an aspirated shield and subsequently removed using a regression model. Systematic error resulting from changes in the sensor height due to accumulating snow was insignificant in our study area. Several other systematic errors occurring in the early days of the AWS systems were identified and corrected. After the corrections, multiple AWS records were integrated to create a time series for each station. The percentage of missing data over the three decades was 21% for Relay Station and 28% for Dome Fuji. The missing rate at Mizuho was 49%, more than double that at Relay Station. These new records allow for the study of temperature variability and change in DML, where climate change has so far been largely unexplored. Significance StatementAntarctic climate change has been studied using temperature data at staffed stations. The staffed stations, however, are mainly located on the Antarctic Peninsula and in the coastal regions. Climate change is largely unknown in the Antarctic plateau, particularly in the western sector of the East Antarctic Plateau in areas such as the interior of Dronning Maud Land (DML). To fill the data gap, this study presents a new dataset of monthly mean near-surface climate data using historical observations from three automatic weather stations (AWSs). This dataset allows us to study temperature variability and change over a data-sparse region where climate change has been largely unexplored.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    