Quantitation of Circulating Mycobacterium tuberculosis Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa
- Award ID(s):
- 2047503
- PAR ID:
- 10498115
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Nano
- Volume:
- 17
- Issue:
- 21
- ISSN:
- 1936-0851
- Page Range / eLocation ID:
- 21093 to 21104
- Subject(s) / Keyword(s):
- nanopore, pediatric tuberculosis, blood test, ESAT-6, CFP-10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Shin, Sunny (Ed.)ABSTRACT Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses toMycobacterium tuberculosisbacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb’s access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments.more » « less
-
Abstract Tuberculosis (TB), caused by the pathogenMycobacterium tuberculosis, affects millions of people worldwide. Several TB drugs have lost efficacy due to emerging drug resistance and new anti‐TB targets are needed. Recent research suggests that indole‐3‐glycerol phosphate synthase (IGPS) inM. tuberculosis(MtIGPS) could be such a target. IGPS is a (β/α)8‐barrel enzyme that catalyzes the conversion of 1‐(o‐carboxyphenylamino)‐1‐deoxyribulose 5’‐phosphate (CdRP) into indole‐glycerol‐phosphate (IGP) in the bacterial tryptophan biosynthetic pathway.M. tuberculosisover expresses the tryptophan pathway genes during an immune response and inhibition ofMtIGPS allows CD4 T‐cells to more effectively fight againstM. tuberculosis. Here we review the published data onMtIGPS expression, kinetics, mechanism, and inhibition. We also discussMtIGPS crystal structures and compare them to other IGPS structures to reveal potential structure‐function relationships of interest for the purposes of drug design and biocatalyst engineering.more » « less
An official website of the United States government

